Drug Resistance: Oncology 520
March 27, 2012

John R. Mackey MD
Medical Oncologist,
Cross Cancer Institute

Professor of Oncology
University of Alberta

john.mackey@albertahealthservices.ca
Outline

- **General principles**
 - Impact of malignancy and drug resistance
 - Hallmarks of malignancy
 - Emerging appreciation of cancer complexity
- **Types and mechanisms of drug resistance**
- **Rational approach to progress**
 - Appropriate combinations of drugs
 - Understanding the target
 - Predictive assays
The impact of malignancy

• Despite advances in cancer diagnosis, prevention, and treatment, still 50% five year mortality in the developed world

• second most common cause of mortality the prosperous world: 1 in 5

• optimal therapy is curative in only 50% of patients presenting with cancer
Concepts

- Approximately half of cancers will have spread beyond the reach of local or regional treatments, where patients may benefit from systemic treatments.
Systemic therapy

- **Chemotherapy**
 - systemic administration of cytotoxic drugs
 - intended to deal with non-localized disease

- **Hormonal therapy**
 - manipulation of the hormonal environment to suppress malignant cells
Concepts

- Chemotherapy and hormone therapy are systemic treatments.
- Chemotherapy is usually given in repeated doses.
- Chemotherapy is usually given as combinations of drugs.
- Resistance to chemotherapy is a major clinical problem.
What does drug resistance mean to the patient?
Clinical resistance in solid tumours

- *de novo* resistance (progressive disease)

- Resistance develops after response (PR -> PD)

- Stable disease

- Major response
What underlies drug resistance?
Hallmarks of Malignancy

Growth factor self-sufficiency

Evading apoptosis

Sustained angiogenesis

Insensitivity to anti-growth signals

Tissue invasion and metastasis

Limitless replication potential

Several of these defining characteristics of malignancy contribute to drug resistance

- Evade / resistance to apoptosis
- Limitless replication potential
- Insensitivity to anti-growth signals
- Growth factor self-sufficiency
Defining the problem

• Some cancers are simple

• Some cancers are much more complex than we feared ….
Simple, Stupid Cancers

- Single dominant mutation
- Monotherapy is effective
- Resistance is rare and late
 - Chronic myelogenous leukemia
 - BCR-ABL fusion gene due to translocation
 - Gastrointestinal stromal tumors
 - c-kit mutation
Complex, Smart Cancers

- Multiple mutation drivers
- Large mutational burden
- Intratumor heterogeneity
- Multi-targeted therapy needed
- Resistance common and early

adapted from G. Sledge ASCO 2010
Complex landscapes of somatic rearrangement in human breast cancer genomes

Philip J. Stephens¹, David J. McBride¹, Meng-Lay Lin¹, Ignacio Varela¹, Erin D. Pleasance¹, Jared T. Simpson¹, Lucy A. Stebbings¹, Catherine Leroy¹, Sarah Edkins¹, Laura J. Mudie¹, Chris D. Greenman¹, Mingming Jia¹, Calli Latimer¹, Jon W. Teague¹, King Wai Lau¹, John Burton¹, Michael A. Quail¹, Harold Swerdlow¹, Carol Churcher¹, Rachael Natrajan², Anieta M. Sieuwerts³, John W. M. Martens⁵, Daniel P. Silver⁴, Anita Langerød⁵, Hege E. G. Russnes⁵, John A. Foekens³, Jorge S. Reis-Filho², Laura van ’t Veer⁶, Andrea L. Richardson⁴,⁷, Anne-Lise Børresen-Dale⁵,⁸, Peter J. Campbell¹, P. Andrew Futreal¹ & Michael R. Stratton¹,⁹

- 24 primary breast cancers each show unique pattern of DNA rearrangements
- No recurrent rearrangement identified

- Nature, 2010
Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution

Sohrab P. Shah1,2*, Ryan D. Morin3*, Jaswinder Khattra1, Leah Prentice1, Trevor Pugh3, Angela Burleigh1, Allen Delaney4, Karen Gelmon4, Ryan Gullany1, Janine Senz2, Christian Steidl2,5, Robert A. Holt3, Steven Jones3, Mark Sun1, Gillian Leung1, Richard Moore3, Tesa Severson3, Greg A. Taylor3, Andrew E. Teschendorff6, Kane Tse1, Gulisa Turashvili1, Richard Varhol3, René L. Warren3, Peter Watson7, Yongjun Zhao3, Carlos Caldas6, David Huntsman2,5, Martin Hirst3, Marco A. Marra3 & Samuel Aparicio1,2,5

- Primary breast cancer had 5 mutations (and subpopulations with an additional 6 mutations)
- At relapse 9 years later, this cancer had 32 mutations
- None of these 32 mutations were seen in a panel of 192 breast cancers (ie every cancer a most mutations are unique)
 - Nature, 2009
Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

C Phylogenetic Relationships of Tumor Regions

- Ubiquitous
- Shared primary
- Shared metastasis
- Private

- **KDM5C** (missense and frameshift)
- **mTOR** (missense)

SETD2 (frameshift)

SETD2 (splice site)

VHL

SETD2 (missense)

KDM5C (splice site)
The problem

• Genetic changes driving cancer are more complex than previously appreciated
• Standard drug treatments for early stage breast cancer frequently fail
 • molecular determinants driving treatment failure are largely unknown
• We need to reduce this complexity!
Key questions

• Can transcriptome analysis identify the pathways that are associated with early relapse despite state of the art therapy?

• Can we identify upregulated key genes and pathways in treatment refractory early breast cancers that might serve as new drug targets?
BREAD Study

Beast cancer Relapsing EARly Determinants
BREAD Study Background

- Samples and patients specifically selected from > 4000 primary tumors in the Alberta Research Tissue Bank

- Nonmetastatic breast cancers treated with curative intent
 - Standardized Alberta Breast Cancer Program therapy
 - Surgical resection
 - Chemotherapy – anthracycline and taxane
 - Trastuzumab
 - Hormonal therapy
 - Radiotherapy
BREAD Samples

• 176 women consenting for analysis of frozen primary cancers
 • 88 cancers have relapsed despite standard treatment
 • 88 clinically identical control tumours have not relapsed despite substantially longer followup

• The two groups are matched for
 • ER status
 • HER2 status
 • Time to Relapse / minimum Time Free of Relapse
 • Stage
Transcriptome analysis to identify drug targets

• Upregulated transcripts in known genes
• Looked within specific breast cancer subgroups
 • ER positive HER2 negative
 • ER negative HER2 negative
 • HER-2 negative (ER any)
• Pathway Analysis
• Machine learning predictor modeling
• Examine Disease-Free Survival curves dichotomized at median for individual genes
Genes and proteins of therapeutic interest

• Upregulated in relapsed cases, highly statistically significant, large variation in transcription level on scatter plot, significant prognostic impact when dichotomized at median expression value, protein determinations prognostic
Protein validation

• Drugs target proteins, not genes …

• Immunohistochemical validation

 • Does protein abundance / cellular localization:
 • Correlate with expression analysis?
 • Replicate the prognostic significance in the BREAD cohort?
 • Replicate the prognostic significance in an independent cohort with known ER and HER2 status (n=7300)?
HER-2 negative ER negative cohort – dichotomized at median single gene with a reported small molecule inhibitor

log rank p = 0.0019
hazard ratio = 3.212
HER-2 negative ER positive cohort – dichotomized at median

log rank $p = 0.0001$

hazard ratio $= 5.081$
BREAD Study Findings
9 Validated Targets

+ +
Growth factor self-sufficiency

++
Evading apoptosis

++++
Sustained angiogenesis

++++
Limitless replication potential

++
Insensitivity to anti-growth signals

+
Tissue invasion and metastasis

Implications of BREAD study

• We have identified key pathways associated with treatment failure / relapse
• We may identify new drug targets and related predictive markers
• There are common pathways that appear to drive relapse despite standard adjuvant therapy
Specific mechanisms of drug resistance
“Intrinsic” Resistance

• **A clinical definition**
 • Initial insensitivity to therapy

• **Reasons**
 • Lack of selectivity for the malignant cells
 • Inadequate scheduling
 • Biochemical insensitivity
 • Inadequate drug delivery
Biochemical drug resistance

drug entry → cytoplasm

drug efflux → decreased drug activation

drug breakdown → altered or amplified or repaired intracellular target

nucleus
Circumventing biochemical resistance

- Use more than one drug
- Use combinations of agents that enhance drug activation / accumulation / efficacy
- Use agents that inhibit drug inactivation or target repair
“Acquired” drug resistance

- A clinical definition
 - Insensitivity to therapy that develops during the course of treatment

- Reasons
 - Host changes that lead to inadequate drug delivery
 - Tumour changes that lead to inadequate drug delivery
 - Selection of initially resistant subclone
 - Genetic and epigenetic changes that results in insensitivity to drug
 - Upregulation of anti-apoptotic mechanisms
Therapy can select resistant clones
Different drugs may kill different clones
Principles of combination chemotherapy

- each agent should have single agent efficacy
- non-overlapping toxicities
- different mechanisms of action
- no cross resistance
Combination therapy may overcome drug resistance
Drug resistance due to physical factors
Physical barriers to drug delivery

- Tumour interstitial pressure
 - Cancers are hard – Why?
 - No lymphatic drainage
- Poor oxygenation / hypoxia
 - Neoangiogenesis
- Antiangiogenic therapy
 - Appears, in general, to augment effect of chemotherapy
 - Three FDA approved drugs (bevacizumab, sorafenib, sunitinib)
Concepts

- Systemic therapy may be given for three reasons:
 - to cure
 - to prolong life
 - to reduce symptoms
- Knowing the treatment goal helps the doctor and patient decide on treatment and “justifiable” side effects.
Some cancers respond poorly to chemotherapy

- Non-small cell lung cancer
- Colorectal cancer
- Pancreatic cancer
- Renal cell carcinoma
- Hepatocellular carcinoma
- Head and neck carcinoma
- Metastatic melanoma
Some cancers respond to chemo but are not curable

- Advanced small cell lung cancer
- Metastatic breast cancer
- Bladder cancer
- Chronic leukemias
- Multiple myeloma
Some cancer that chemotherapy may cure at advanced stages

- Hodgkin’s disease
- aggressive lymphomas
- acute lymphoblastic leukemia
- testicular cancer
- gestational trophoblastic neoplasia
How do we improve systemic therapy?

- Understand the target cell
 - Is the cancer stem cell the real target?
- Understand and exploit relevant mechanism of resistance
 - Molecular predictive assays
Cancer Stem Cells

• Identified in leukemia, breast, colon, and brain cancers

• Features
 • can differentiate into all the cell types of the parental tumor
 • activation of pluripotency genes (Oct4, Sox2, Nanog)
 • self renewal
 • tumorigenic
 • Multidrug resistance
The Implications of Cancer Stem Cells (CSCs) for Treatment

drugs that kill cancer cells but not CSCs

tumor regresses

CSCs regenerate tumor

tumor recurrrs

drugs that kill CSCs

tumor loses its ability to generate new cells

tumor degenerates

patient is cured
Characteristics of malignant breast stem cells

- Able to exclude Hoechst dye (drug efflux pump)
- Less susceptible to apoptosis
- Don’t look much like “breast cancer” cells
What opportunities does this knowledge convey?

- New drugs should be tested for their ability to kill breast stem cells, not shrink big tumours.
- Analysis of the entire tumour may be less helpful than analysis of the stem cell component.

Never, never, think outside the box.
Anti-Cancer Stem Cell Therapies

Targets?
- Self renewal pathways (wnt, Notch, Hedgehog)
- Epidermal – mesenchymal transition pathways
- Cytokine and inflammatory pathways
- CD-44 and integrins

Stem cell drugs?
- salinomycin, metformin, tesmilifene, sulforaphane, curcumin, piperine
Stem Cell Take Home Messages

- Inherently drug resistant and resistant to apoptosis
- May be a major contributor to clinical drug resistance
- Yet to be shown whether it is possible to kill malignant stem cells yet spare normal tissue stem cells …
How do we improve systemic therapy?

- Understand the target cell
 - Stem cell – the real target
- Understand and exploit relevant mechanism of resistance
 - Molecular predictive assays
Two Questions

- **Prognostic assay**
 - “How bad is my cancer, Doc?”

- **Predictive assay**
 - “What is the right way to treat my cancer, Doc?”
 - “Is this drug going to work?”
 - “Am I going to get severe side effects?”
Why do we need predictive assays?

• Ineffective therapy is costly
 • patient time
 • patient toxicity
 • societal costs

• Predictive assays improve the risk: benefit ratio
Validated predictive assays for systemic therapy

- *Estrogen receptor* status for breast cancer benefit from hormonal therapy (42 years old)
- *HER-2* amplification for benefit from trastuzumab therapy for breast cancer (14 years old)
- *hENT1* overexpression for benefit from gemcitabine for advanced pancreatic cancer (validation underway)
Predictive assays in development for nucleoside chemotherapy

- Gemcitabine as an example
Pyrimidine nucleoside analogs

ara-C Gemcitabine
Toxicities of anticancer nucleosides

- Hematologic
 - neutropenia
 - thrombocytopenia
 - T cell depletion
 - anemia
- mucositis
- diarrhea
- skin toxicity
Anticancer nucleosides

- Cytotoxicity and/or clinical response correlates with cellular accumulation of cytotoxic metabolites in target cells
 - gemcitabine - in vitro
 - cytarabine (Ara-C) - in vitro and in vivo
 - fludarabine - probably/variable results
 - capecitabine - in vitro and in vivo
Gemcitabine Uptake and Metabolism
Hypothesis

- Early steps of nucleoside transport and metabolism are important determinants of clinical nucleoside drug sensitivity
- Analysis of clinical samples for nucleoside transport and metabolic capacity will identify patients with drug-resistant disease
hENT1 and pancreas cancer

- Gemcitabine monotherapy is standard palliation for advanced pancreatic adenocarcinoma
- *In vitro* studies show hENT1 deficiency confers resistance to gemcitabine toxicity
hENT1 immunohistochemistry

- murine monoclonal antibody raised against intracellular loop of hENT1
- antigen detection was performed using a goat-anti mouse antibody directly labeled with a polymer-peroxidase conjugate - BROWN stain
- hENT1 staining intensity on a 0-2 + scale
Pancreas CA patients

- Inclusion in this study required each of the following criteria
 - histologic diagnosis of pancreatic adenocarcinoma
 - Formalin-fixed paraffin-embedded tumor sample adequate for study
 - no gemcitabine or radiotherapy prior to the tissue sampling
 - treatment with gemcitabine at an Alberta Cancer Board facility between Sept 1998 and Dec 2002
hENT1 positive pancreatic cancer
Multiple arrows highlight a hENT1-negative gland. Lymphocytes (as positive internal controls) were strongly positive.
Kaplin-Meier estimate of survival in gemcitabine-treated pancreatic cancer patients

- □: positive hENT1 tumors (1+ or 2+)
- ○: hENT1 deficient tumour

p = 0.01
Conclusions

• patients with pancreatic adenocarcinomas with uniformly detectable hENT1 immunostaining have a significantly longer survival after gemcitabine chemotherapy

• hENT1 immunohistochemistry is candidate for a predictive assay to appropriately select patients for palliative gemcitabine therapy

• Is hENT1 predictive, or only prognostic?

• Requires confirmation in randomized study to distinguish predictive markers from prognostic markers!
Human ENT1 is predictive of response in patients with pancreatic cancer treated with gemcitabine: Results from the RTOG 9704 Prospective Randomized Trial.

Gastroenterology, 2009
Methods
RTOG 9704

- Adjuvant treatment of resected pancreatic cancer
- A Phase III randomized study
 - Pre and post chemoradiation 5-FU
 - vs
 - Pre and post chemoradiation 5FU and Gemcitabine

Stratify
Nodal status

Tumor diameter

Surgical margin

Randomize

Arm 1:
Pre-CRT + CRT + Post-CRT
5-FU 5-FU

Arm 2:
Pre-CRT + CRT + Post-CRT
Gemcitabine Gemcitabine

RTOG: Radiation Therapy Oncology Group
Methods

hENT1 Protein Expression : IHC

- RTOG 9704 Tissue Microarray
 - 220 patient tumors per TMA
 - 3 separate TMAs
- hENT1 Immunohistochemistry (IHC)
 - Mouse anti hENT1 monoclonal antibody
 - Score in triplicate
 - Blinded score, unaware of clinical outcomes data
Methods
Statistical Analysis

- hENT1 score was correlated
 - Treatment Group
 - Overall
 - 5-FU vs Gemcitabine
 - Treatment outcome
 - Overall survival
 - Disease free survival
 - Toxicity

- Unconditional logistic regression analysis using the Chi-square test and the Cox proportional hazards model.
Results

hENT1: Overall Survival (univariate analysis)

Gemcitabine Arm

<table>
<thead>
<tr>
<th>Staining</th>
<th>Total</th>
<th>Dead</th>
<th>MST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low, High (> 50%)</td>
<td>73</td>
<td>53</td>
<td>1.61</td>
</tr>
<tr>
<td>No Staining</td>
<td>18</td>
<td>15</td>
<td>1.12</td>
</tr>
</tbody>
</table>

p = 0.02

5-FU Arm

<table>
<thead>
<tr>
<th>Staining</th>
<th>Total</th>
<th>Dead</th>
<th>MST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low, High (> 50%)</td>
<td>81</td>
<td>65</td>
<td>1.41</td>
</tr>
<tr>
<td>No Staining</td>
<td>26</td>
<td>23</td>
<td>1.35</td>
</tr>
</tbody>
</table>

p = 0.75
Results

Disease Free Survival (univariate analysis)

Gemcitabine Arm

5-FU Arm

% ALIVE WITHOUT DISEASE

YEARS FROM RANDOMIZATION

Total Failed MDFST

Low, High (> 50%) 73 60 0.99
No Staining 18 15 1.12

p = 0.05

Total Failed MDFST

Low, High (> 50%) 81 72 0.99
No Staining 26 24 0.82

p = 0.60
Conclusion

• hENT1: RTOG 9704 Study
 • Improved Overall Survival
 • Gemcitabine, but not 5-FU Treatment Arm
 • Improved Disease Free Survival
 • Gemcitabine, but not 5-FU Treatment Arm
• Univariate and Multivariate Analysis
• Correlation between outcome and hENT1 Score
 • Has predictive value, not prognostic value
Conclusions

• Predictive assays can pick out patients unlikely to benefit from treatment
• Predictive assays can improve risk: benefit ratio of treatment
Drug resistance is the main barrier to cure of advanced cancers.

Multiple mechanisms contribute to drug resistance.

An understanding of these mechanisms is leading to improvements in anticancer drug treatment:

- rational combinations
- molecularly targeted therapy
- stem-cell targeted approaches
- predictive assays