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Abstract: Glioblastoma (GBM) is an aggressive tumor with a dismal prognosis. Neural stem-like 

cells contribute to GBM’s poor prognosis by driving drug resistance and maintaining cellular heter-

ogeneity. GBM neural stem-like cells express high levels of brain fatty acid-binding protein (FABP7), 

which binds to polyunsaturated fatty acids (PUFAs) ω-6 arachidonic acid (AA) and ω-3 docosahex-

aenoic acid (DHA). Similar to brain, GBM tissue is enriched in AA and DHA. However, DHA levels 

are considerably lower in GBM tissue compared to adult brain. Therefore, it is possible that increas-

ing DHA content in GBM, particularly in neural stem-like cells, might have therapeutic value. Here, 

we examine the fatty acid composition of patient-derived GBM neural stem-like cells grown as neu-

rosphere cultures. We also investigate the effect of AA and DHA treatment on the fatty acid profiles 

of GBM neural stem-like cells with or without FABP7 knockdown. We show that DHA treatment 

increases DHA levels and the DHA:AA ratio in GBM neural stem-like cells, with FABP7 facilitating 

the DHA uptake. We also found that an increased uptake of DHA inhibits the migration of GBM 

neural stem-like cells. Our results suggest that increasing DHA content in the GBM microenviron-

ment may reduce the migration/infiltration of FABP7-expressing neural stem-like cancer cells. 

Keywords: glioblastoma; docosahexaenoic acid; neural stem-like cells; B-FABP; FABP7; fatty acids; 

phospholipids; neurospheres 

 

1. Introduction 

Glioblastoma (grade IV astrocytoma) is the most common primary brain cancer in 

adults [1,2]. It is a highly aggressive and deadly cancer, with a median survival time of 

~15 months despite multimodality therapy [3,4]. Resistance to treatment is due in part to 

the invasion of surrounding brain parenchyma by GBM cells, suggesting that targeting 

the infiltrative properties of GBM cells might be an effective therapeutic strategy [5]. In 

addition to their infiltrative nature, GBMs are highly heterogeneous tumors at both the 

cellular and molecular levels, adding an additional level of complexity to the effective 

targeting of these tumors [6,7]. Multi-lineage differentiation from GBM neural stem-like 

cells forms the basis of GBM heterogeneity [8,9], with GBM neural stem-like cells display-

ing resistance to radiation and chemotherapy, thereby repopulating the tumor [10,11]. 

GBM neural stem-like cells exhibit distinct metabolic profiles compared to non-stem cell 

populations, with reduced glycolysis and higher lipid metabolism [12–14]. Dysregulation 

of lipid metabolism has also been associated with maintenance of GBM stemness and poor 
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survival [14,15]. Important mediators of lipid metabolism, such as brain fatty acid-binding 

protein (B-FABP or FABP7) [16], fatty acid transporter CD36 [17], acyl-CoA-binding pro-

tein (ACBP) [18], and lipid elongation enzyme ELOVL2 [19] have all been reported to be 

highly expressed in GBM neural stem-like cells, highlighting the importance of lipid me-

tabolism. 

The human adult brain is highly enriched in lipids, especially long chain polyunsatu-

rated fatty acids (PUFAs) [20,21]. The two main types of PUFAs in the brain are ω-6 ara-

chidonic acid (AA) and ω-3 docosahexaenoic acid (DHA) [20]. DHA and AA are believed 

to have opposing roles in cancer [22]. AA is the precursor of ω-6 series eicosanoids such 

as prostaglandin E2 (PGE2), which stimulate inflammation, cancer growth, and invasion 

[23–25]. In contrast, DHA is the precursor of neuroprotectins and resolvins, which resolve 

inflammation and inhibit cancer growth [26–28]. In healthy adult brain, there is a tightly 

controlled balance between ω-6 and ω-3 PUFAs, with DHA levels exceeding AA levels in 

both total lipids and total phospholipids [29]. In human GBM tumor tissue, AA levels 

remain similar to that of healthy brain tissue; however, DHA levels are decreased by 50%, 

resulting in a significantly lower DHA:AA ratio [30,31]. DHA supplementation in GBM 

cells inhibits cell proliferation [32,33] and migration [34,35], and induces apoptosis 

[32,35,36]. Furthermore, DHA sensitizes GBM cells to ionizing radiation [37], suggesting 

that DHA supplementation may benefit GBM patients. 

Brain fatty acid-binding protein (B-FABP or FABP7) is normally expressed in neural 

stem cells during development [38,39], and is also expressed in GBM stem-like cells 

[16,40]. FABP7, whose preferred ligands are PUFAs [41], is preferentially found at the in-

filtrative edges of GBM tumors [16,42] and its expression correlates with increased GBM 

cell migration [43]. DHA treatment has previously been shown to increase DHA content 

in the total lipids of U87 GBM cells [32]. Furthermore, C6 glioma cells injected directly 

into rat brain have elevated ω-3 PUFA levels and an increased ω-3:ω-6 ratio when rats are 

fed a DHA-rich diet compared to control diet [44]. Based on our previous work, DHA 

inhibits GBM cell migration in a FABP7-dependent manner [34]. However, these results 

were obtained with well-established cell lines believed to represent the more ‘differenti-

ated’ aspect of GBM tumors. As resistance to treatment and poor prognosis has been 

linked to the neural stem-like tumor cell populations (a.k.a. brain tumor-initiating cells) 

in GBM tumors [10,11,45,46], it is important to know whether DHA treatment will have 

similar effects on GBM neural stem-like cells.  

Here, we examine the fatty acid composition of patient-derived GBM cells cultured 

in either regular medium (contains fetal calf serum and promotes a generally more differ-

entiated phenotype) or neurosphere medium (contains B-27 supplement and growth fac-

tors and promotes a more neural stem cell-like phenotype) [47,48]. We compare the effects 

of DHA treatment and FABP7 expression on DHA uptake and cell migration in these two 

types of GBM cells. We also investigate the role of FABP7, which is highly expressed in 

GBM stem-like cells [40], in the uptake of DHA in lipids and phospholipids. Our results 

indicate that DHA treatment increases the DHA content in total lipids and phospholipids 

of GBM neural stem-like cells, with FABP7 expression facilitating DHA uptake. We also 

report a correlation between increased DHA uptake and decreased cell migration in GBM 

neural stem-like cells.  

2. Materials and Methods 

2.1. Primary GBM Neurosphere Cultures 

GBM primary cultures (A4-004, A4-007, A4-011, and A4-012) were prepared by en-

zymatic digestion of GBM biopsies obtained from patients who were consented prior to 

surgery under Health Research Ethics Board of Alberta Cancer Committee approval 

(HREBA.CC-14-0070). GBM cells were plated in either DMEM supplemented with 10% 

fetal calf serum (FCS) (for the generation of adherent cultures with a more differentiated 

phenotype) or DMEM/F12 medium supplemented with 0.5X B-27 (Life Technologies, 
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Carlsbad, CA, USA), 20 ng/mL epidermal growth factor (EGF), and 10 ng/mL fibroblast 

growth factor (FGF) (for the generation of neurosphere cultures with a neural stem cell-

like phenotype). ED501 neurosphere cultures and U251 GBM cells have been previously 

described [49]. 

2.2. Establishment of Stable FABP7-Depleted Cell Lines 

Lentivirus shRNA packaging plasmids and control plasmids were purchased from 

Sigma. The two lentivirus FABP7 shRNA constructs used for our experiments were ob-

tained from the University of Alberta RNAi Core Facility. FABP7 shRNA constructs se-

quences and virus production have been described previously [49]. The MISSION pLKO.1 

plasmid (SHC002; Sigma-Aldrich, St Louis, MO, United States) served as the control vec-

tor. A4-004N, U251 and ED501 cells were infected with lentivirus overnight and the me-

dium changed. Infected GBM cells were selected in 1 μg/mL puromycin. 

2.3. Western Blotting 

For western blot analysis, we loaded 40 μg of whole cell lysates per lane. Proteins 

from whole cell lysates were separated by SDS-polyacrylamide gel electrophoresis and 

transferred to nitrocellulose membranes. Membranes were then immunoblotted with rab-

bit polyclonal anti-FABP7 (prepared in-house; 1:1000) [49] and mouse anti-GAPDH 

(1:1000; Thermo Fisher Scientific, Waltham, MA, United States) antibodies, followed by 

horseradish peroxidase-conjugated secondary antibodies (1:50,000; Invitrogen, Thermo 

Fisher Scientific, Waltham, MA, United States) using ECL Western Detection Reagent (GE 

Healthcare Life Sciences, Chicago, IL, United States). 

2.4. Fatty Acid Preparation and Treatment 

Fatty acids (DHA and AA) (Sigma-Aldrich, St Louis, MO, United States) were dis-

solved in ethanol, then complexed to BSA (Roche) over a steady stream of nitrogen gas 

and stored at −80 °C under reducing conditions. Both GBM neurosphere and GBM adher-

ent cells were cultured at 37 °C in a humidified 5% CO2 atmosphere. For fatty acid treat-

ment, A4-004 neurosphere and adherent cells at 60–70% confluency were cultured in me-

dium (neurosphere medium for A4-004N and serum-free DMEM for A4-004Adh) with 30 

μM BSA (vehicle control), 30 μM DHA, or 30 μM AA for 24 h. Cells were then collected 

for lipid extraction and fatty acid analysis. Experiments were repeated three times.  

2.5. Lipid Extraction and Gas Chromatography 

Total lipids were extracted with chloroform/methanol (2:1 vol/vol) using a modifica-

tion of the Folch procedure [50]. Thin layer chromatography on silica G plates was used 

to isolate total phospholipids. Samples were scraped and methylated at 110 °C with a mix-

ture (1:1) of BF3/methanol reagent (Sigma) and hexane. Fatty acid methyl esters were sep-

arated and identified by gas liquid chromatography (Agilent Model7890A, Agilent Tech-

nologies) using a 100 m CP-Sil 88 fused capillary column (100 m × 0.25 mm, Agilent Tech-

nologies, Santa Clara, CA, United States) and STD 502 (NuChek, Elysian, MN, United 

States) [51]. Fatty acids with a 14 to 24 carbon chain length were quantified and are pre-

sented as % of total fatty acids. 

2.6. Semi-Quantitative RT-PCR 

RNA was purified from paired patient-derived GBM neurosphere (A4-004N, A4-

007N, A4-011N and A4-012N) and adherent cells (A4-004Adh, A4-007Adh, A4-011Adh 

and A4-012Adh) using the RNeasy Plus Kit (Qiagen), and cDNA was generated using 

Superscript II reverse transcriptase (Life Technologies). The following primers were used 

for semi-quantitative RT-PCR analysis: FABP7 (Forward 5′-TGGAGGCTTTCTGTGC-

TAC-3′; Reverse 5′-TAGGATAGCACTGAGACTTG-3′), SOX-2 (Forward 5′-ACAC-
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TGCCCCTCTCACACA-3′; Reverse 5′-CATTTTTTTCGTCGCTTGGAG-3′), Nestin (For-

ward 5′-GGAGAAACAGGGCCTACAG-3′; Reverse 5′-GCAGAGAGAGAGGAGCATC-

3′) and β-actin (Forward 5′-CTGGCACCACACCTTCTAC-3′; Reverse 5′-CAT-

ACTCCTGCTTGCTGATC-3′) 

2.7. Lipid Droplet Analysis 

GBM neural stem-like cells (A4-004N and ED501) were cultured on coverslips in neu-

rosphere medium followed by treatment with BSA (vehicle control) or 30 μM DHA for 24 

h. U251 cells were cultured in serum-free DMEM supplemented with BSA or 60 μM DHA 

for 24 h. Cells were fixed with 4% paraformaldehyde for 5 min at room temperature and 

stained with 1 μg/mL Nile Red for 15 min. Coverslips were mounted with Mowiol 4-88 

mounting medium containing DAPI and images were acquired using a Zeiss confocal mi-

croscope. ImageJ software was used for quantitative analysis. We used particle analysis 

to identify the number of nuclei (indicative of number of cells) in each image. The images 

were thresholded so that particles >20 μm2 were identified as nuclei. The Nile Red channel 

was thresholded to minimize background signal and identify regions of interest (ROIs). 

Nile Red total intensity was calculated based on the number of pixels under each intensity 

(0–255) in the ROIs of each image. The average Nile Red intensity per cell was calculated 

based on total Nile Red intensity divided by the number of cells in each image. 

2.8. Transwell Assay 

Directional cell migration was measured using the Transwell cell migration assay. 

Fifty thousand cells in neurosphere medium were seeded in the top chambers of 24-well 

cell culture Transwell inserts (Falcon Cell Culture Inserts, Corning, Glendale, AZ, United 

States). Cells were allowed to migrate through an 8-μm polyethylene terephthalate (PET) 

membrane towards a chemoattractant (DMEM + 10% fetal calf serum) in the bottom cham-

ber for 20 h. Fatty acids were added to culture medium for 24 h before carrying out the 

migration assay. Cell fixation, immunostaining and cell counts have been previously de-

scribed [52]. Three independent experiments were carried out for each cell line tested. 

2.9. Statistical Analysis  

Assessment of the significance of differences between groups was by one-way 

ANOVA followed by post-hoc Tukey’s test (three groups comparison) and student’s un-

paired t-test (two groups comparison). Microsoft Excel (Microsoft, Redmond, WA, USA) 

and Prism 8 (GraphPad Software, San Diego, CA, USA) were used for statistical analysis 

of data. A p-value < 0.05 was considered statistically significant. 

3. Results 

3.1. Fatty Acid Profiles of Total Lipids Extracted from GBM Neural Stem-Like versus Adherent 

Cells 

GBM tumor tissues have elevated levels of proteins involved in fatty acid metabolism 

compared to normal brain [53]. Many of these proteins (FABP7, FASN and ELOVL2) are 

up-regulated in GBM patient-derived tumor stem cell cultures compared to more-differ-

entiated adherent cells cultured in serum-containing medium [13,19,40]. Expression of 

PUFA metabolism genes in GBM neural stem-like cells suggests that it may be possible to 

alter the PUFA content of these cells through manipulation of the lipid microenvironment. 

As our previous results indicate that an increased DHA:AA ratio inhibits GBM cell migra-

tion [34], we compared the fatty acid profiles of GBM neural stem-like cells versus GBM 

adherent cells, and the effect of DHA and AA supplementation on their respective fatty 

acid profiles.  

We established GBM cultures from patients using “neurosphere” medium (promotes 

growth of neural stem-like cells) and “FCS-containing” medium (promotes growth of 

GBM cells with a more differentiated adherent phenotype) [48]. We first examined the 
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expression of FABP7, an established GBM neural stem-like cell marker [40], in our paired 

GBM cultures using semi-quantitative RT-PCR. While all eight cultures expressed FABP7, 

levels were generally higher in the neural stem-like cell cultures compared to adherent 

cultures (Figure 1). Similar trends were observed when we examined the expression of the 

well characterized GBM neural stem cell markers, Nestin and SOX-2 (Figure 1). These re-

sults are consistent with a previous report showing higher expression of FABP7 in neuro-

sphere cultures compared to adherent cultures, and correlation of FABP7 with Nestin and 

SOX-2 [40]. As the biggest difference in FABP7 levels was observed in A4-004, we used 

A4-004N and A4-004Adh cultures for our fatty acid profiling study.  

 

Figure 1. Preferential expression of FABP7 in neurosphere cultures. Semi-quantitative RT-PCR anal-

ysis of FABP7, SOX-2, and Nestin (NES) in paired patient-derived GBM adherent and neurosphere 

cultures. β-Actin was used as the loading control. 

Total lipids were extracted from A4-004N and A4-004Adh cells cultured in their re-

spective media and fatty acid composition was analysed by gas chromatography (Table 

S1). Differences in fatty acid composition were observed for all classes of fatty acids (sat-

urated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated ω-

6 and ω-3 PUFAs)) (Table S1 and Figure 2A). The most prevalent ω-3 PUFA in A4-004Adh 

was DHA (1% of total fatty acids), while DHA was virtually undetectable in A4-004N 

(Figure 2C). In A4-004N, the most abundant ω-3 PUFA was C18:3 (alpha-linolenic acid 

(ALA)) (1.79% of total fatty acids) (Table S1). The most prevalent forms of ω-6 PUFA were 

C20:2ω-6 (3.25% of total fatty acids in A4-004N vs. 0.95% in A4-004Adh) and C20:4ω-6 

(AA) (1.01% in A4-004N vs. 3.01% in A4-004Adh) (Figure 2D). The DHA:AA ratio was 

much lower in A4-004N compared to A4-004Adh cells (0.14 vs. 0.84), whereas the ω-3:ω-

6 ratio showed no difference in A4-004N compared to A4-004Adh cells (0.42 vs. 0.41) (Fig-

ure 2E).  

Next, we examined the effect of AA or DHA treatment on the fatty acid composition 

of A4-004N and A4-004Adh total lipids (Table S2). Cells were cultured in their respective 

“neurosphere” versus “adherent” media, supplemented with BSA (control), 30 μM AA or 

30 μM DHA for 24 h before they were harvested for lipid extraction. To ensure that BSA 

itself would not affect our results, we also compared the fatty acid composition of A4-

004N and A4-004Adh lipids in BSA (vehicle control) and untreated cells. No significant 

differences were noted between untreated and BSA-treated cells (Table S3).  

AA treatment increased AA levels, along with its downstream mediators, adrenic 

acid (ADA, C22:4ω-6), and docosapentaenoic acid (DPA, C22:5ω-6) in both A4-004N and 

A4-004Adh cells (Table S2). The DHA:AA ratio was decreased ~7-fold and 3-fold upon 

AA treatment in A4-004N and A4-004Adh, respectively (Figure 3C), whereas the ω-3:ω-6 

ratio was decreased ~3-fold and 2-fold upon AA treatment in A4-004N and A4-004Adh, 

respectively (Figure 3D). 
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Figure 2. Fatty acid composition of total lipids and total phospholipids extracted from A4-004N and A4-004Adh cells. 

Total lipids (TL) were extracted, and total phospholipids (PL) separated from A4-004N and A4-004Adh and fatty acid 

composition measured by gas chromatography. (A) Percent abundance of saturated fatty acids (SFA), monounsaturated 

fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) in total lipids and total phospholipids of A4-004N and A4-

004Adh cells. (B) Percent abundance of ω-3 PUFA and ω-6 fatty acids PUFA in total lipids and total phospholipids of A4-

004N and A4-004Adh cells. (C) Percent abundance of C20:5ω-3 (EPA) and C22:6ω-3 (DHA) fatty acids in total lipids and 

total phospholipids of A4-004N and A4-004Adh cells. (D) Percent abundance of C20:4ω-6 (AA), C20:2ω-6 and C20:3ω-6 

(DGLA) fatty acids in total lipids and total phospholipids of A4-004N and A4-004Adh cells. (E) DHA:AA ratio, and ω-3:ω-

6 ratios in total lipids and total phospholipids of A4-004N and A4-004Adh cells. See Tables S1 and S4 for comprehensive 

lists of fatty acids in total lipids and phospholipids, respectively. n = 3. * indicates p < 0.05, ** indicates p < 0.01, *** indicates 

p < 0.001, and **** indicates p < 0.0001. Abbreviations: DHA, docosahexaenoic acid; AA, arachidonic acid. 

 

Figure 3. Effects of PUFA treatment on AA- and DHA-incorporation in total lipids and total phospholipids from A4-004N 

and A4-004Adh cells. A4-004N and A4-004Adh culture media were supplemented with BSA (control), 30 μM AA, or 30 

μM DHA. Percent abundance of DHA (A,E), percent abundance of AA (B,F), DHA:AA ratio (C,G) and ω-3:ω-6 ratio (D,H) 

in total lipids (A–D) and total phospholipids (E–H) of A4-004N and A4-004Adh cells. n = 3. Different letters indicate that 

groups are significantly different. See Tables S2 and S5 for comprehensive lists of fatty acids in total lipids and phospho-

lipids, respectively. 

Strikingly, DHA treatment increased DHA content by more than 100-fold (an in-

crease from 0.1% of fatty acids to 11.2% of fatty acids) in A4-004N total lipids compared 

to 8-fold (1.01% to 8.09%) in A4-004Adh (Figure 3A). This increase in DHA resulted in an 

~130-fold increase in the DHA:AA ratio in A4-004N (from 0.07 to 9.65) compared to ~9-

fold in A4-004Adh cells (Figure 3C). The overall increase in the ω-3:ω-6 ratio was ~6-fold 

and ~4-fold in A4-004N and A4-004Adh DHA-treated cells, respectively (Figure 3D). 



Nutrients 2021, 13, 2664 7 of 16 
 

 

These results indicate efficient uptake of both AA and DHA in neural stem cell-like cul-

tures.  

3.2. Fatty Acid Profiles of Phospholipids from GBM Neural Stem-Like versus Adherent Cells 

Phospholipids are a major component of cell membranes. PUFA supplementation 

affects membrane phospholipid composition and fatty acid recycling [54,55]. In turn, 

PUFAs in cell membranes affect their properties, including fluidity and distribution of 

membrane-bound proteins [49,56–58]. We therefore examined the fatty acid composition 

of phospholipids from A4-004N and A4-004Adh cells (Table S4 and Figure 2). Trends sim-

ilar to those observed in total lipids were seen in phospholipids, such as increased MUFAs 

(42.8% vs. 39.2%) and decreased PUFAs (9.9% vs. 14.4%) in A4-004N compared to A4-

004Adh cells (Table S4 and Figure 2A). There was less ω-6 PUFA incorporated into the 

phospholipids from A4-004N (7.1%) compared to A4-004Adh cells (9.9%). Similarly, less 

ω-3 PUFAs were incorporated in the phospholipids from A4-004N (2.9%) compared to 

A4-004Adh cells (4.6%) (Figure 2B). Levels of ω-3 PUFAs were similar in total lipids and 

phospholipids of both A4-004N and A4-004Adh cells, whereas ω-6 PUFAs were more 

abundant in phospholipids compared to total lipids in A4-004Adh cells, suggesting pref-

erential incorporation of ω-6 PUFAs in membrane phospholipids of adherent cultures 

(Figure 2B).  

Similar to that observed for total lipids, AA was the most abundant ω-6 PUFA in A4-

004Adh phospholipids (3.8%), whereas C20:2ω-6 was the most abundant ω-6 PUFA in 

A4-004N total phospholipids (3.9%) (Table S4, Figure 2D). Similar to total lipids, ALA 

(1.6%) was also abundant in A4-004N phospholipids (Table S4). Increased levels of DHA 

in both A4-004N and A4-004Adh total phospholipids (0.2% and 1.8%, respectively) com-

pared to total lipids (undetectable and 1%, respectively) were noted, suggesting preferen-

tial incorporation of DHA in phospholipids when cells are grown in their standard culture 

media (Figure 2C). Similar to total lipids, the DHA:AA ratio was lower in A4-004N com-

pared to A4-004Adh phospholipids (0.2 vs. 0.5). The overall ω-3:ω-6 ratio in A4-004N 

phospholipids was similar to that observed in A4-004Adh (0.4 vs.0.5) (Table S4 and Figure 

2E).  

AA treatment resulted in ~6X and ~2X increases in the AA content of phospholipids 

extracted from A4-004N and A4-004Adh cells, respectively, whereas DHA treatment in-

creased the DHA content of phospholipids by ~18X and ~3.8X in A4-004N and A4-004Adh 

cells, respectively (Table S5). Similar to what was observed in total lipids, AA treatment 

resulted in ~14-fold and ~5-fold increases in the levels of the AA downstream product, 

ADA, in A4-004N and A4-004Adh phospholipids, respectively. In DHA-treated cells, the 

DHA:AA ratio increased by ~21-fold in A4-004N phospholipids, resulting in DHA:AA 

ratio of 4.9 (Figure 3G). In comparison, there was a ~3.8-fold increase in the ratio of 

DHA:AA in the phospholipids of DHA-treated A4-004Adh cells compared to BSA control 

cells, resulting in a DHA:AA ratio of 1.8 (Figure 3G). The overall increase in the phospho-

lipid ω-3:ω-6 ratio was ~3-fold and ~2-fold in A4-004N and A4-004Adh DHA-treated cells, 

respectively (Figure 3H). Thus, while highly significant, the incorporation of DHA into 

A4-004N and A4-004Adh phospholipids was not as strikingly different as that observed 

for total lipids, suggesting that DHA levels may be relatively more stable in phospholipids 

compared to total lipids in GBM cells.  

3.3. FABP7 Facilitates DHA Uptake in GBM Neural Stem-Like Cells 

FABPs play an important role in lipid-mediated biological processes through the reg-

ulation of fatty acid uptake, storage, and trafficking fatty acids to different locations in the 

cell [59,60]. PUFAs, especially DHA and AA, are preferred ligands for FABP7, with ω-3 

DHA having a 4-fold higher binding affinity for FABP7 compared to ω-6 AA based on 

Isothermal Titration Calorimetry and Lipidex 1000 [41,61].  

To gain insight into the role of FABP7 in the uptake of ω-3 DHA or ω-6 AA in GBM 

neural stem-like cells, we investigated the effect of FABP7 knockdown on DHA and AA 
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incorporation in the total lipids and phospholipids of GBM neural stem-like cells. FABP7 

was knocked-down in A4-004N cells using lentiviral shRNA constructs (shFABP7-1 and 

shFABP7-2) (Figure 4). In A4-004N shControl cells, AA and DHA treatment increased the 

intracellular levels of AA and DHA, respectively, in both total lipid and total phospho-

lipid fractions, as described earlier for non-transfected A4-004N cells (Figure 5). Upon 

FABP7 depletion, however, DHA uptake into total lipids was significantly reduced in 

DHA-treated A4-004N cells (6.4% in A4-004 shFABP7-1 cells and 6.6% A4-004N shFABP7-

2 cells, compared to 12.9% in A4-004N shControl cells) (Figure 5A). Reduced DHA incor-

poration also resulted in a decreased DHA:AA ratio and ω-3:ω-6 ratio in total lipids of 

FABP7-depleted A4-004N cells compared to A4-004N shControl cells (Figure 5C,D). No-

tably, reduced DHA incorporation was not observed in total phospholipids of FABP7-

depleted cells (Figure 5E), nor were the DHA:AA and ω-3:ω-6 ratios affected by FABP7 

depletion (Figure 5G,H). Interestingly, even though AA is also a ligand for FABP7, FABP7 

depletion had no significant effect on the uptake of AA in either total lipids (Figure 5B) or 

total phospholipids (Figure 5F). In agreement with these data, neither the DHA:AA ratio 

nor the ω-3:ω-6 ratio was affected by FABP7 depletion in AA-treated A4-004N cells (Fig-

ure 5C,D,G,H). Our combined FABP7 results suggest the presence of a compensatory 

mechanism for AA uptake in GBM neural stem-like cells when FABP7 is depleted, and a 

specialized role for FABP7 in the uptake of DHA in total lipids of A4-004N cells.  

 

Figure 4. FABP7 levels in lentivirus-infected A4-004N cells. Western blot analysis of FABP7 in total 

lysates prepared from A4-004N cells transfected with shControl, shFABP7-1 and FABP7-2 lentiviral 

constructs. GAPDH was used as the loading control. 

FABPs are responsible for both the uptake and trafficking of their fatty acid ligands 

within cells. FABP7 has previously been shown to increase the formation of lipid droplets, 

an organelle responsible for lipid storage [62,63]. As our data indicate that FABP7 expres-

sion increases the uptake of DHA into total lipids, but not phospholipids, we examined 

whether FABP7 delivers DHA to lipid droplets. We observed an increased accumulation 

of lipid droplets when A4-004N shControl cells were cultured in medium supplemented 

with 30 μM DHA (Figure 6). Intriguingly, upon FABP7 depletion, lipid droplet accumu-

lation was significantly reduced, suggesting that DHA may be preferentially stored in li-

pid droplets in FABP7-expressing cells (Figure 6A). Quantitative analyses revealed a >2-

fold decrease in the average intensity of Nile Red staining per cell upon FABP7 depletion 

in DHA-treated A4-004N cells (Figure 6B). Similar results were observed in U251 cells and 

ED501N cells, both of which also express FABP7 (Figure S1) [49].  
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Figure 5. Effects of PUFA treatment on the incorporation of AA and DHA into total lipids and total phospholipids from 

A4-004N control and shFABP7 knockdown cells. A4-004N shControl, shFABP7-1, and shFABP7-2 were cultured in me-

dium supplemented with BSA (control), 30 μM AA, or 30 μM DHA. Percent abundance of DHA, AA, DHA:AA ratio and 

ω-3:ω-6 ratio in total lipids (A–D) and total phospholipids (E–H) of A4-004N shControl and shFABP7 cells.. **** indicates 

p < 0.0001. ns. indicates not significant.  

 

Figure 6. Effect of DHA treatment on lipid droplet formation in A4-004N shControl and A4-004N 

shFABP7 cells. (A) A4-004N shControl and shFABP7 cells were cultured in medium supplemented 

with BSA control or 30 μM DHA. Cells were stained with Nile Red and images captured by confocal 

microscopy. DAPI was used to stain the nucleus. (B) Quantification of lipid droplets in A4-004N 

shControl and shFABP7 cells cultured in DHA-supplemented medium. The average intensity of 

Nile Red staining per cell was measured using raw images (n = 8, 15–30 cells/image) taken by con-

focal microscopy. *** indicates p < 0.001. 
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3.4. DHA-Mediated Inhibition of GBM Neural Stem-Like Cell Migration Is Dependent on 

FABP7 Expression 

We have previously reported that AA promotes, whereas DHA inhibits, U87 GBM 

cell migration in an FABP7-dependent manner [34]. We therefore used the Transwell mi-

gration assay to examine the effect of DHA and FABP7 expression on GBM neural stem-

like cell migration. A4-004N shControl cells and A4-004N shFABP7 cells were cultured in 

neurosphere medium supplemented with 30 μM DHA or BSA control for 24 h before car-

rying out the Transwell assay. As previously shown for adherent GBM cells, migration 

rates of FABP7-depleted A4-004N cells were significantly reduced compared to A4-004N 

shControl cells (Figure 7A,B). DHA treatment resulted in a >60% decrease in the migration 

of A4-004N shControl cells compared to BSA control (p < 0.05). In contrast, the migration 

of A4-004N shFABP7 cells was not affected by DHA treatment. Our combined results in-

dicate that although DHA uptake is observed in both shControl and shFABP7 cells, it is 

only when FABP7 is present that uptake of DHA leads to the inhibition of GBM neural 

stem-like cell migration. 

 

Figure 7. Effects of DHA treatment on the migration of A4-004N shControl and A4-004N shFABP7 

cells. (A) Representative Transwell images of A4-004N shControl and A4-004N shFABP7 cells cul-

tured in medium supplemented with bovine serum albumin (BSA control) or 30 μM DHA. (B) 

Quantification of migrating cells described in (A). Differences were assessed for significance using 

the two-tailed unpaired t-test. n = 3. *** indicates p < 0.005 

4. Discussion 

GBM tumors share key features with the development of the central nervous system 

(CNS) [64]. First, GBM tumors have subpopulations of neural stem-like cells that express 

neural stem cell markers, such as Nestin, CD133, and FABP7. Second, migration and in-

filtration of GBM cells share morphologically and structurally similar features to those 

associated with long-distance migration during neurogenesis in developing brain. Third, 

the DHA:AA ratio in GBM tissue is similar to that seen in the fetal brain when neural cells 

are undergoing long distance migrations [30,31]. Notably, FABP7 is essential for both the 
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maintenance of radial glial progenitor cells [65] and neuronal cell migration during brain 

development [38,39]. In standard GBM adherent cell cultures, overexpression of FABP7 

increases, whereas knockdown of FABP7 decreases GBM cell migration and infiltration 

[16,42]. Moreover, FABP7 is highly expressed in GBM neural stem-like cells [40] and its 

elevated levels are associated with poor clinical outcome [62]. In combination, these data 

suggest that FABP7 may be able to hijack the brain’s normal developmental processes for 

the maintenance of GBM stemness and tumor infiltration in brain parenchyma.  

The brain is highly enriched in long chain PUFAs, especially FABP7′s preferred lig-

ands, ω-3 DHA and ω-6 AA, which make up 8% and 6% of the dry weight of adult human 

brain, respectively [29,66]. FABP7 is found in both the cytoplasm and nucleus, as well as 

at the plasma membrane where it is involved in the uptake of PUFAs [34,49]. FABP7 plays 

different roles in the cell depending on which ligand it is bound to [34,66,67]. DHA has 

previously been shown to inhibit the migration of FABP7-expressing GBM cells [34,35], as 

well as sensitize GBM cells to chemotherapy and radiation in vitro [32,37,68,69]. It is al-

ready known that dietary DHA can affect the fatty acid composition of lipids in brain 

tissue [70–72], opening the door to the possibility that GBM patient outcome could be im-

proved by increasing the DHA content in the tumor microenvironment.  

Neural stem-like cells are key players in GBM cellular heterogeneity and therapy re-

sistance [46,73]. Gene expression profiling has revealed significant differences between 

neural stem-like GBM cells cultured under neurosphere conditions and adherent GBM 

cells cultured in serum-containing medium, with the neural stem-like cells more closely 

mirroring the original tumor [47,48,74]. Furthermore, compared to their matched serum-

differentiated counterparts, GBM neurosphere cultures are enriched in enzymes involved 

in the PUFA synthesis cascade such as ELOVL2 and FASD2 [19]. Cyclooxygenase 2 (COX-

2), which metabolizes AA to its downstream bioactive metabolites (e.g., prostaglandins), 

is preferentially activated in GBM neural stem-like cells compared to adherent cells [75]. 

We have previously shown that COX-2 is upregulated in FABP7-expressing GBM cells 

cultured in AA-rich medium [34]. Interestingly, when patient-derived GBM tumors are 

sorted into fast- versus slow-cycling (neural stem-like) cells, the latter not only preferen-

tially express FABP7 but have elevated levels of PUFA metabolism intermediates [62]. 

Thus, there is an emerging link between stemness, FABP7 expression, and increased 

PUFA metabolism in GBM.  

PUFA metabolism is gaining recognition as an important contributor to GBM tumor-

igenic properties. However, little is known about the uptake and trafficking of PUFAs in 

GBM neural stem-like cells. To date, the effect of DHA on GBM fatty acid composition has 

only been investigated using established GBM cell lines cultured under adherent (differ-

entiation-promoting) conditions [32]. By comparing the fatty acid composition of patient-

derived GBM neural stem-like cells with that of their adherent counterparts, we found 

that DHA treatment effectively increases the DHA content in both total lipids and total 

phospholipids of GBM neural stem-like cells, but especially in total lipids. Our results 

further indicate that FABP7 plays an important role in the efficient uptake of DHA in total 

lipids but not phospholipids. This preferential link between DHA, FABP7, and total lipids 

is particularly interesting in light of our recent finding that DHA treatment disrupts 

FABP7 nanodomains clustered on the surface of GBM neural stem-like cells and promotes 

FABP7 localization to mitochondria [49]. Our previous work also shows that DHA treat-

ment in FABP7-expressing GBM cells promotes the nuclear localization of FABP7 and in-

duction of PPAR activity [34]. Thus, FABP7′s main role in DHA-supplemented GBM cells 

may be to facilitate the uptake, intracellular transport, and utilization of DHA for func-

tions that are unrelated or not directly related to phospholipids. 

Along with the decrease in DHA uptake in total lipids observed in FABP7-depleted 

GBM neural stem like cells, we also found that FABP7 depletion decreased the formation 

of lipid droplets in GBM neural stem-like cells cultured in DHA-supplemented medium. 

Associations between FABP7 expression and lipid droplet formation have been previ-

ously reported. For example, FABP7 expression is associated with elevated numbers of 
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lipid droplets in both astrocytes and GBM cells [62,63]. Furthermore, up-regulation of 

FABP7 expression in U87 adherent GBM cells cultured under hypoxic conditions was ac-

companied by increased fatty acid uptake and increased formation of lipid droplets [76]. 

Long believed to simply serve as storage sites for fats, lipid droplets are now known to be 

hubs that coordinate a wide range of lipid-related functions ranging from delivery of fatty 

acids to mitochondria, regulation of membrane dynamics, and timed release of bioactive 

lipids that regulate inflammation [77,78]. DHA has already been implicated in the remod-

eling of lipid droplets in microglia, with a demonstrated effect on the inhibition of neuro-

inflammation [79]. Based on these combined data, one may therefore postulate that FABP7 

expression in GBM neural stem-like cells has the potential of inducing an anti-tumorigenic 

response when cells are cultured in a DHA-rich microenvironment that promotes the for-

mation of DHA-rich lipid droplets. 

Consistent with the idea that DHA has anti-tumorigenic properties in FABP7-ex-

pressing GBM neural stem-like cells, we found that DHA inhibited the migration of 

FABP7-expressing GBM neural stem-like cells but had negligible effects on their FABP7-

depleted counterparts. These results are consistent with our previous findings using the 

established adherent U87 GBM cell line [34] and indicate that the migratory properties of 

FABP7-expressing GBM cells are dependent on the ratio of DHA:AA in the tumor micro-

environment. Together, our findings suggest that infiltrative FABP7-expressing GBM 

neural stem-like cells will be selectively targeted by DHA treatment. Thus, while expres-

sion of FABP7 may promote GBM growth in an AA-rich tumor microenvironment, in a 

DHA-rich microenvironment, FABP7 may inhibit tumor infiltration as the result of in-

creased DHA uptake and utilization. We thus propose that FABP7 is the Achilles’ heel of 

GBM neural stem-like cells, with the potential of inhibiting the migration/infiltration of 

these cells in a DHA-rich microenvironment. DHA-rich diets have already been shown to 

inhibit breast cancer xenograft tumor growth and metastasis [80,81], delay neuroblastoma 

cancer progression in immunodeficient mice [82], as well as increase the in vitro and in 

vivo efficacy of chemotherapy drugs used for the treatment of colon cancer [83–86]. It will 

be important to investigate whether DHA supplementation can increase DHA levels in 

both the GBM microenvironment and GBM tissue, thereby paving the way to improved 

GBM patient outcome, by inhibiting the infiltration of FABP7-expressing GBM neural 

stem-like cells into brain parenchyma. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/nu13082664/s1, Figure S1: Effects of DHA treatment on lipid droplet formation in U251 

and ED501N cells with or without FABP7 depletion, Table S1: Fatty acid composition of total lipids 

extracted from A4-004N and A4-004Adh cells, Table S2: Fatty acid composition of total lipids ex-

tracted from A4-004N and A4-004Adh cells cultured in media supplemented with BSA (control), 30 

μM AA or 30 μM DHA, Table S3: Fatty acid composition of total lipids and total phospholipids from 

A4-004N and A4-004Adh cells cultured under normal culture conditions and in media supple-

mented with 30 μM BSA, Table S4: Fatty acid composition of total phospholipids from A4-004N and 

A4-004Adh cells, Table S5: Fatty acid composition of total phospholipids from A4-004N and A4-

004Adh cells cultured in media supplemented with BSA (control), 30 μM AA or 30 μM DHA. 
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