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The vertebrate kinetochore is a complex structure that

specifies the attachments between the chromosomes

and microtubules of the spindle and is thus essential for

accurate chromosome segregation. Kinetochores are

assembled on centromeric chromatin through complex

pathways that are coordinated with the cell cycle. In the

light of recent discoveries on how proteins assemble

onto kinetochores and interact with each other, we

review these findings in this article (which is part of the

Chromosome Segregation and Aneuploidy series), and

discuss their implications for the current mitotic

checkpoint models – the template model and the two-

step model. The template model proposes that Mad1–

Mad2 at kinetochores acts as a template to change the

conformation of another bindingmolecule of Mad2. This

templated change in conformation is postulated as a

mechanism for the amplification of the ‘anaphase wait’

signal. The two-step model proposes that the mitotic

checkpoint complex (MCC) is the kinetochore-indepen-

dent anaphase inhibitor, and the role of the unaligned

kinetochore is to sensitize the anaphase-promoting

complex/cyclosome (APC/C) to MCC-mediated

inhibition.

The ability of chromosomes to achieve spindle bi-orien-
tation is key to accurate chromosome segregation. At the
onset of mitosis, rapidly growing and shrinking micro-
tubules (MTs) probe the cytoplasm in search of kineto-
chores, which are macromolecular complexes assembled
on opposite sides of the centromere that mediate
interactions between the chromosomes and MTs. Once
the sister kinetochores are attached to MTs from opposite
poles, the chromosome undergoes a series of oscillatory
motions that guide the chromosome towards the spindle
equator. These oscillatory motions are dictated by the
coordinated growth and shrinkage of the kinetochoreMTs.
Chromosome motility relies on the unique ability of the
kinetochore to interact with the highly dynamic ends of
MTs. This differs from other MT-based transport events
that rely on interactions with a relatively static lattice of
the MTs.

The stochastic nature by which kinetochores encounter
MTs is an error-prone process that can result in non-
productive connections [1]. The kinetochore is therefore a
highly complex machine that does not merely bind and
affect the dynamics of its attached MTs but possesses
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quality-control mechanisms that detect and correct
defective or nonproductive interactions. Mechanistic
insights into these remarkable activities will only be
achieved by identifying and characterizing the molecular
components of kinetochores in a wide variety of species.
General organization of the kinetochore

The vertebrate kinetochore, as seen by transmission
electron microscopy, appears as a trilaminar stack of
plates that is situated on opposite sides of the centromeric
heterochromatin of the mitotic chromosome [2]. In the
absence of MT attachments, a meshwork of fibers, termed
the fibrous corona, can be seen to extend from the surface
of the outer plate [3]. The fibrous corona and the outer
plate contain the majority of the known MT-interacting
proteins (CENP-E, dynein, see Table 1 and Figure 1) [4] as
well as checkpoint proteins (Bub1, BubR1, Bub3, Mad1,
Mad2, Mps1, Nuf2, HEC1, Zwint-1, ZW10, Roughdeal; see
Tables 2 and 3) [5] that monitor the integrity of
kinetochore attachments. The protein composition of the
middle zone is not known. The inner plate is immediately
adjacent to the centromere but also comprises centromeric
chromatin that is specified by the presence of the histone
H3 variant CENP-A [6] (Figure 2).
Kinetochore assembly

From a morphological standpoint, the vertebrate kineto-
chore appears to be vastly more complex than the
kinetochore of budding yeast. At the molecular level, the
kinetochore compositions of all organisms studied to date
share a surprisingly large number of proteins (Figure 2).
One explanation that is commonly used to explain the
apparent discrepancy between the morphological and
molecular data is that the kinetochores of metazoans are
assembled from repeated subunits [7], where each repeat
might reflect the unit module of the yeast kinetochore.
This is indirectly supported by the observation that there
are multiple copies of proteins at the human kinetochore
as opposed to what is likely to be a single copy at yeast
kinetochores (some yeast proteins are dimers or tetra-
mers, based on purification of pre-existing subcomplexes
[8]). With the increase in copy number, mechanisms must
also be in place to assemble these modules into supramo-
lecular complexes that form the trilaminar plates.
Additional mechanisms might be also required to coordi-
nate the multiple repeats folding into the highly con-
densed three-dimensional structure. How the higher
organization is achieved is unclear, but it might be
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Table 1. Kinetochore MT-binding proteinsa

MT binding

proteins

Localization Knockout, knockdown, dominant-negative or

overexpression phenotypes

Proposed role in mitosis Refs

CENP-E,

member of

kinesin-7

family

Fibrous corona,

outer KT

Antibody microinjection: mitotic arrest; defective

chromosome alignment and MT attachment;

unable to convert monopolar attached chromo-

somes to bipolar attached chromosomes;

reduced KT tension; spindle pole fragmentation.

CENP-E interacts with BubR1 at KTs and

activates BubR1 kinase activity in the absence

of MTs in vitro. CENP-E is proposed to be the

MT sensor that relates KT MT occupancy or

tension status to the mitotic checkpoint.

[4,12,

81]

Overexpression of motorless CENP-E: defective

chromosome alignment.

siRNA: mitotic arrest; defective chromosome

alignment and reduced stability of KT MTs;

reduced KT tension; spindle pole fragmentation.

[82]

Immunodepletion from Xenopus extracts:

defective mitotic checkpoint; failure to recruit

Mad1 and Mad2.

[83]

Mouse knockout: embryonic lethal, conditional

knockout MEFs: defective mitotic checkpoint;

defective chromosome alignment; reduced

stability of KT MTs; reduced BubR1 kinase

activity; reduced recruitment of Mad1 and Mad2.

[84]

MCAK/

XKCM1,

member of

kinesin 13

family

Centromere Lagging chromosomes; long spindles; KT–MT

attachment errors; reduced KT tension Over-

expression of MCAK: mitotic arrest, lack of KT

MTs.

Regulates spindle MT dynamics by catalyzing

the depolymerization of MTs. Activity of MCAK

is modulated by the tension-sensitive aurora B

kinase and the PP1 gamma phosphatase.

[33,85]

Dynein/

dynactin

KT siRNA knockdown of cytoplasmic DHC: mitotic

arrest.

[86]

Inhibition of dynein/dynactin by dominant-

negative p150-CC1 or 70.1 anti-dynein antibody:

elongation of MT in spindle assembled in

Xenopus egg extracts.

Dynein/dynactin is required for targeting Kif2a,

a MT-depolymerizing KinI kinesin, to the

spindle pole.

[87]

Microinjection of p50 dynamitin or 70.1 anti-

dynein antibody: prevented Mad2 depletion

from KTs; reduced KT tension; mitotic arrest at

metaphase

Dynein/dynactin is required for the inactivation

of the mitotic checkpoint by transporting Mad2

poleward and away from KT after metaphase

alignment.

[46]

Overexpression of p50 dynamitin: defect in

chromosome alignment, distorted mitotic spin-

dle

[88]

CLIP170 KT, plus-ends

of MTs

Overexpression of dominant-negative CLIP170:

delay in mitosis; displacement of endogenous

CLIP170

CLIP170 is aCTIPs and is proposed to function

in the establishment of metaphase chromo-

some alignment and as an anti-catastrophe

factor.

[33]

Lis1 KT, plus ends

of MTs

Microinjection of antibody: defects in chromo-

some alignment; delay in mitotic progression;

defects in chromosome segregation. Overex-

pression of Lis1: defects in chromosome align-

ment; defects in spindle orientation.

Lis1 mediates CLIP-170–dynein interactions

and coordinates dynein cargo-binding and

motor activities.

[89]

CLASP1 Fibrous corona,

plus-ends of

MTs

Microinjection of antibody: spindle collapse;

defective chromosome attachment; defective MT

dynamics at KTs

CLASP1 regulates MT dynamics at KTs [33]

Overexpression of dominant-negative CLASP1:

spindle collapse; MT bundling.

Adenomatous

polyposis coli

(APC)

KT, plus-ends

of MTs

Immunodepletion from Xenopus egg extracts:

aberrant spindle formation

APC functions to mediate KT–plus-end-MT

attachment. APC is found to interact with the

Bub1 mitotic checkpoint kinase and might

functionally link to the mitotic checkpoint.

[33]

Mutant APC C-terminal truncation in mouse ES

cells or overexpression of APC C-terminal 253

amino acids: weakened KT–MT interaction;

defective chromosome segregation; reduced KT

tension; defective mitotic checkpoint.

EB1 KT, plus-ends

of MTs

EB1 binds APC, CLASP1 and 2, and dynein/

dynactin. EB1 might modulate KT MT

polymerization and/or attachment

[90]

Sgo1 KT, inner

centromereb

siRNA knockdown and microinjection of anti-

body: premature segregation of sister chroma-

tid; defective KT-MT attachment; prolonged

mitotic delay; reduced KT tension; reduced KT

MT dynamics.

Sgo1 might be involved in the establishment of

sister centromere cohesion. Sgo1 might link

sister centromere cohesion with MT inter-

actions at KT.

[91]

aAbbreviations: ES, embryonic stem; KT, kinetochore; CTIPs, plus-end-tracking proteins; MEF, mouse embryonic fibroblast; MT, microtubule.
bIt is currently unresolved whether human Sgo1 localizes to outer kinetochore, inner centromere or both.
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(b)  Assembly of the
centromere and the pre-kT

(a)  Assembly of the kinetochore is
temporally regulated and specified by
multiple interconnecting branches

(d)  CENP-A assembly pathway(c)  Mis12 assembly pathway

Figure 1. Kinetochores are assembled from multiple pathways that are temporally controlled. (a) Multi-branched assembly pathway that links inner kinetochore proteins

CENP-H and CENP-I with outer kinetochore proteins CENP-E, CENP-F, HEC1/Ndc80 complex, Mad1 and Mad2. The arrows indicate assembly dependencies. Lines depict the

order of appearance at the kinetochore. (b) Mis12 and CENP-A specify two major assembly branches. The trimethyl-lysine 9 histone H3 (triMeK9H3) modification recruits

binding of HP1 to the centromere, and HP1 presumably recruits the binding of Mis12. The red arrow indicates the dependency of the trimethyl lysine 9 modification of histone

H3 on the suv39h1 methyltransferase. (c) The Mis12 assembly pathway. Mis12 co-immunoprecipitates with Zwint-1, which is required for the kinetochore localization of

Zw10. Zw10 and Rod are required for the recruitment of the motor protein dynein/dynactin to the kinetochore. Mis12 also interacts with DC8, PMF1, C20orf172, KNL-

1/AF15q14/KIAA1570 and the Ndc80 complex. (d) CENP-A assembly at the kinetochore is dependent on RbAp46 and RbAp48, proteins that are involved in histone

deacetylation.
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specified by proteins that are unique among metazoans
[93].

Molecular evidence supporting a kinetochore assembly
pathway came from studies in HeLa cells that showed that
there was a temporal order in which proteins appeared at
kinetochores. Some proteins, such as CENP-F [9], an outer
kinetochore protein, appeared at kinetochores between
late G2 and prophase, whereas others, such as CENP-E
and dynein, did not appear until after nuclear envelope
breakdown (CENP-E and dynein are MT motors, see
Table 1). Indeed, closer examination has revealed the
following temporal pattern of localization for the following
proteins: hBub1/CENP-F/hBubR1/CENP-E [5,10]
(Figure 1a). Bub1 and BubR1, homologs of budding yeast
mitotic checkpoint proteins Bub1 and Mad3 (Figure 2c),
are mitotic checkpoint kinases that assemble on kineto-
chores during the late G2 phase of the cell cycle [5]. The
temporal order in which proteins appear at kinetochores
reflects, in part, the hierarchical relationship among these
proteins. For instance, Bub1 in human cells has been
shown to be required for the assembly of BubR1, CENP-F,
CENP-E and Mad2 [11]. However, these proteins do not
exhibit a linear relationship, as exemplified by the finding
that the localization of Mad2 does not depend on CENP-E
[12], and the localization of CENP-E does not depend on
CENP-F (T.J. Yen, unpublished). hBub1 must therefore
specify multiple branches of assembly that direct the
assembly of CENP-F, hBubR1 and CENP-E (Figure 1a).
www.sciencedirect.com
There are examples where the assembly of a protein
depends on multiple branches. For example, the localiz-
ation of CENP-F to kinetochores not only depends on
hBub1 but also on CENP-I/hMis6 [13], a constitutive
kinetochore protein (Figure 1a). As an aside, CENP-I/
hMis6 also specifies a separate branch that is required for
the sequential assembly of hNuf2/Ndc80, Mps1, Mad1 and
Mad2 [13,14] (Figure 1a; T.J. Yen unpublished). As hBub1
assembly does not depend on CENP-I/hMis6, the localiz-
ation of CENP-F depends on two separate pathways. The
significance of this is unclear but might reflect a way to
coordinate the different pathways so that no single
assembly pathway outpaces the other.

Recent efforts have shown that CENP-A and hMis12
define two major branches of the assembly pathway in
human cells (Figure 1b,c). Mis12 was identified in the
fission yeast Schizosaccharomyces pombe as part of a
collection of temperature-sensitive (ts) minichromosome
instability (mis) [15] mutants. Vertebrate orthologs of
Mis12 have been identified that exhibit limited
sequence similarity with S. pombe Mis12 [16]. Although
the phenotype of cells depleted of hMis12 is very
similar to that seen for cells depleted of CENP-A,
these proteins do not appear to depend on each other
for their localization at kinetochores [16], as was the
case in fission yeast [17]. Thus, hMis12 represents a
centromere/kinetochore assembly pathway that is inde-
pendent of CENP-A.
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Table 2. Kinetochore mitotic checkpoint proteinsa,b

Budding

yeast

Vertebrates Localization and roles in mitosis

Bub1 Bub1 Mitotic checkpoint kinase [33]

Localizes to KTs

Bub3 Bub3 Binds to Bub1 and BubR1

Localizes to KTs [33]

Part of the MCC complex [70]

Mad1 Mad1 Required for kinetochore assembly of

Mad2

Localizes to nuclear pores and unat-

tached KTs [47]

Mad2 Mad2 Binds to Cdc20

Part of the MCC complex [70]

Localizes to nuclear pores and unat-

tached KTs [47]

Mad3 BubR1 BubR1, localizes to KTs [44]

Mitotic checkpoint kinase [44]

Part of the MCC complex [70]

MPS1 MPS1 Mitotic checkpoint kinase [33]

Localizes to nuclear pores, centro-

somes and KTs [48]
aThe Bub and Mad mitotic checkpoint proteins were originally identified in budding

yeast and are evolutionarily conserved in vertebrates.
bAbbreviations: KT, kinetochore; MCC, mitotic checkpoint complex.
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The deposition of CENP-A was assumed to be the
crucial step in establishing centromere identities in all
species. The mechanism by which newly replicated
centromere DNA becomes incorporated into CENP-A-
containing chromatin remains an open question. In the
budding yeast Saccharomyces cerevisiae, simultaneous
deletion of the chromatin assembly factor subunit cac1
and histone regulatory gene hir caused mislocalization of
its CENP-A protein, Cse4p [18]. In S. pombe, CENP-A
localization depends on Mis6, Ams2 and the recently
discovered Mis15, Mis16, Mis17 and Mis18 proteins
[17,19,20]. The Mis16–Mis18 complex seems to sit at the
top of the hierarchy and is responsible for the recruitment
of SpCENP-A to centromeres. Centromeres of mis16 and
mis18 mutants exhibit increased levels of acetylated
histone H3 and H4 [20]. The human Mis16 orthologs,
RbAp46 and RbAp48, are part the NuRD multisubunit
complex that has deacetylase and nucleosome-remodeling
activities [21]. These are the first proteins reported to be
responsible for CENP-A binding to centromeres in human
cells and thus represent an important advance in our
understanding of the epigenetic mechanism that specifies
centromere identity (Figure 1d). Although it is clear that
neither Mis16 nor RbAp46/48 acts specifically on centro-
meric chromatin, specificity might come through their
interactions with Mis18 and its orthologs [20].
Table 3. Kinetochore mitotic checkpoint proteinsa

Drosophila Vertebrates

ZW10 [92] HZW10 [92]

Roughdeal (Rod) [95] hRod [96]

No homolog hZwint-1 [97]

aKinetochore mitotic checkpoint proteins in the ZW10–Rod complex have no known

complexities of compound kinetochores and mitotic checkpoint regulatory mechanism(

www.sciencedirect.com
Recently, separate groups have identified a complex of
proteins that copurifies with hMis12 [22,23]. These
include hPMF1, DC8, C20orf172, KIAA1570, HEC1
(highly expressed in cancer, human ortholog of yeast
Ndc80 [24]), hNuf2, hSpc24, hSpc25, HP1a, HP1g and
hZwint-1 [23] (Figure 1c). HP1 proteins are heterochro-
matin-binding proteins that bind to the tri-methylated
lysine 9 of histone H3 (triMe3K9H3) [25,26]. The histone
methyltransferase suv39h1modifies lysine 9 of histone H3
at pericentric heterochromatin [27] (Figure 2a). Simul-
taneous knockdown of HP1a and HP1g reduced the level
of Mis12 at kinetochores [23]. A proposed assembly
pathway involves the epigenetic modification of histone
H3 at pericentric heterochromatin, and the recruitment of
HP1, which in turn, specifies the assembly of Mis12
(Figure 1b). Mis12 is then required for assembly of other
kinetochore proteins such as hZwint-1 and the hZW10/
RoughDeal (Rod) complex (Figure 1c), which is at the
outer kinetochore [23]. However, recent examination of
human and Drosophila centromeric chromatin failed to
find heterochromatin-specific histone H3 modification (di-
or tri-methylation of lysine 9), leaving open the question
regarding where exactly Mis12 and the associated
proteins bind to centromeres [28].
Microtubule binding

Kinetochores of metazoans contain the molecular motor
proteins CENP-E [29], dynein/dynactin [30,31] and KinI
kinesin MCAK [32] (see Table 1). In addition, the
kinetochore also contains MT-binding proteins including
CLIP170, CLASP/Orbit, EB1, Sgo1 and APC (adenoma-
tous polyposis coli). These can be further separated into
those whose localization at kinetochores depends on MTs
(APC and EB1) and those that bind to kinetochores
independent of MTs (CLIP170, CLASP, hSgo1). The
functions of these proteins were recently reviewed
[33,34], and we have summarized this information in
Table 1 and Figure 2.

Aside from these MT-binding proteins, the evolutiona-
rily conserved Nuf2–Ndc80–Spc–Spc25 complex is also
essential for kinetochore attachments [35]. How this
complex specifies microtubule attachments is unclear,
but it might play an indirect role in organizing the
supramolecular structure of the kinetochore [36]. The
coordination among differentMT-binding proteins is likely
to be an important factor in specifying chromosome
alignment. In vertebrates, where the number of MTs is
of the order of 20 per kinetochore [12], the dynamics of
Localization and roles in mitosis

Localizes to KTs [93]

Essential component of the mitotic checkpoint [93]

Required for the recruitment of dynein/dynactin [93,94]

Interacts with p50 dynamitin directly [94]

Localizes to KTs [93]

Essential component of the mitotic checkpoint [93]

Required for the recruitment of dynein/dynactin [93,96]

Localizes to KTs [97]

Required for the mitotic checkpoint [98]

Interacts with ZW10 [97], Mis12 [23]

homologs in budding yeast (point kinetochores) and might reflect the increased

s) in metazoans.
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individual MTs might be averaged out so that the
chromosomes display a much smaller range of oscillations
that function to position the chromosomes midway
between the poles. By extension, this might explain a
long-standing paradox regarding why a bipolar-attached
chromosome would move towards the pole that has the
fewest MT attachments: the dynamics of multiple micro-
tubules bound at the lagging kinetochore might just
dampen each other’s activities.

Future analysis of these MT-binding proteins will also
have to move beyond the traditional ‘search and capture’
paradigm. A new mechanism for bipolar attachment has
recently been described [37] whereby MTs nucleated from
kinetochores become incorporated into the spindle [37].
The capture of the minus-ends of these kinetochore fibers
by astral MTs and eventual incorporation into the spindle
pole is mediated by dynein [38]. These kinetochore fibers
have been observed to grow through plus-end-biased
polymerization at kinetochores in Drosophila S2 cells. It
is hypothesized that short MTs formed in the vicinity
(probably because of a high Ran–GTP concentration at
kinetochores [39]) are captured by the kinetochores.
Alternatively, MT growth might be initiated by proteins
at the kinetochore.

The role of checkpoint proteins at kinetochores

The mechanical interactions between the kinetochore and
the spindle are monitored by Mad1, Mad2, Mad3, Bub1,
Bub3 and Mps1, an evolutionarily conserved group of
checkpoint proteins first identified in budding yeast [33,
40]. Rae1 is an evolutionarily conserved protein that is
structurally related to Bub3. Both budding and fission
yeast Rae1 are important for mRNA export [41,42], but
mammalian Rae1 has been reported to associate with
hBub1 and contribute to the spindle checkpoint [43]. In
higher eukaryotes, BubR1 is probably the Mad3 homolog,
but it has evolved to contain a kinase domain [40]. BubR1
is localized on the outer plate of the kinetochore, where it
is postulated to act as a mechanosensor that monitors
the activity of CENP-E [44]. In vitro studies have shown
that BubR1 kinase activity is stimulated when it interacts
with CENP-E [45]. This suggests that the checkpoint
activity of BubR1 might be regulated in vivo by
conformational changes in CENP-E when it interacts
with MTs. Similarly, Mad1 and Mad2 also respond to
mechanical input as they are displaced from kinetochores
with MT attachments [46]. The molecular basis by which
MT attachment displaces Mad1 and Mad2 from the
kinetochore is unknown. An intriguing explanation
might come from the unexpected interaction between
proteins of the kinetochore and the nuclear pore complex
(NPC). Mad1, Mad2 and Mps1 are localized to the
nucleoplasmic face of the NPC during interphase [47–
49], whereas a constellation of NPC proteins localizes to
kinetochores during mitosis [49,50]. Nup358/RanBP2 and
RanGAP1 stand out as their localization at kinetochores is
MT dependent and inversely related to Mad1 and Mad2
[39,51]. One intriguing model is that MTs deliver Nup358/
RanBP2 and RanGAP1 to the kinetochore, and these
proteins compete with Mad1 and Mad2 for common
binding sites.
www.sciencedirect.com
In vertebrate cells, all of themitotic checkpoint proteins
are associatedwith kinetochores at the onset ofmitosis and
persist there until the metaphase-to-anaphase transition
[40]. In budding yeast, Bub1 and Bub3 are detected at
kinetochores during normal mitosis. However, Mad1 and
Mad2 are only detected at kinetochores upon activation of
the mitotic checkpoint [52]. The discrepancy with the
vertebrate kinetochores might be resolved if MT attach-
ments occur more rapidly in yeast. Mad1 and Mad2 are
therefore only detectable if the kinetochores are unoccu-
pied by MTs for a prolonged period. This situation is not
dissimilar to that of vertebrates as the mitotic checkpoint
proteins and MT motor proteins CENP-E and cytoplasmic
dynein accumulate to higher levels at unattached kine-
tochores [33]. Upon MT attachment, Mad2, Mad1, BubR1,
Bub1, CENP-E, dynein/dynactin and Bub3 are released, to
varyingdegrees, fromthekinetochore [33]. This is partially
due to dynein-dependent transport of some kinetochore
proteins (Mad2 [53], CENP-E [46], Zw10 [54] and Rod [55])
off the kinetochore via the spindle MTs and also through
direct release of proteins from the kinetochore into the
cytoplasm (see below) [56,57]. The release of mitotic
checkpoint proteins upon MT attachment at kinetochores
has been proposed as a possible mechanism for silencing
the mitotic checkpoint [46].

The role of checkpoint proteins was recently expanded
with the discovery that hBubR1 is also required for
kinetochore MT attachments [58]. Cells depleted of
hBubR1 are unable to maintain stable kinetochore
attachments. This defect can be reversed by inhibition of
the Aurora B kinase (presumably by stabilizing attach-
ments) [58]. It is unlikely that hBubR1 is directly
responsible for MT attachments, but hBubR1 is more
likely to regulate the activity of a MT-binding protein.
CENP-E might be a target, given its association with
hBubR1. Other proteins are probably involved as the
BubR1 defect is inconsistent with themere loss of CENP-E
function. The contribution of BubR1 to kinetochore
attachments might be analogous to how hBub1 is thought
to play a role in attachments. The attachment defects seen
in cells depleted of hBub1 are likely to arise from the
combined loss of CENP-E, CENP-F and hBubR1 from
kinetochores [11].

Checkpoint mechanisms

How defective kinetochore–microtubule attachment is
detected remains an open question, but we are in a better
position to explain how the checkpoint proteins effect
inhibition of the anaphase-promoting complex/cyclosome
(APC/C), the E3 ubiquitin ligase that drives progression
through mitosis. An earlier model for how Mad2 contrib-
utes towards the checkpoint signaling pathway was
proposed based on the in vivo dynamic properties of
Mad2 as well as its ability to inhibit the APC/C in vitro.
Using an assay where the APC/C activity was dependent
on an exogenous supply of Cdc20, Mad2 was shown to bind
to Cdc20 and prevent it from activating the APC [40,59].
Structural studies have shown that recombinant Mad2
can adopt an open form, O-Mad2 (also known as N1), and a
closed form, C-Mad2 (also known as N2) [60,61]. The
closed form is more potent in inhibiting the APC/C in vitro
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because it has a higher affinity than the open form for
Cdc20. These observations, along with other in vitro data,
led Luo at al. to propose the Mad2 ‘Exchange model’. In
this model, kinetochore-bound Mad1 is thought to
promote the conformational switch from O-Mad2 to
C-Mad2 [60]. As the Mad2-binding sites in Mad1 and
Cdc20 are very similar, Cdc20 is envisioned to compete
with Mad1 for C-Mad2. As long as there are unattached
kinetochores, sufficient amounts of C-Mad2 are thought to
be generated to tie up the cellular pool of Cdc20 and block
its ability to recruit substrates to the APC/C. An inherent
problem with this model is that the affinities between
Mad1–Mad2 and Cdc20–Mad2 might be too high to
account for the rapid exchange of Mad2 between Mad1
and Cdc20. Furthermore, De Antoni et al. recently showed
that Mad2DC, a mutant that cannot directly bind Mad1
alone, can still bind the Mad1–Mad2 complex, which
counters the notion that Mad1 is a chaperone for Mad2–
Cdc20 binding [62].

Template model

A new ‘Template model’ has recently been proposed
whereby Mad1 and C-Mad2 form a stable complex that
recruits O-Mad2 that is present in the cytosol. Upon
binding to the Mad1–C-Mad2 complex, O-Mad2 is
converted to C-Mad2, which is released from the
complex upon binding to Cdc20. This model has its
roots in an earlier idea that recombinant Mad2 can form
homo-oligomers that were more potent at sequestering
Cdc20 and blocking APC/C activity [63]. This oligomer
theory was dispelled by the Mad2R133A mutant, which
cannot oligomerize in vitro but retains its abilities to
bind Cdc20 and Mad1 and mediates mitotic arrest when
overexpressed along with Mad1 in HeLa cells [64]. In
the latest report, the same group showed that a
preformed Mad1–C-Mad2 complex can recruit another
molecule of O-Mad2 through Mad2 dimerization. This
was verified through the use of various Mad2 mutants.
The Mad2DC mutant was found to bind the Mad1–Mad2
Figure 2. Comparison of the molecular organization of kinetochores between vertebrates
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complex even though loss of its C-terminal 10 residues
rendered it unable to stably bind Mad1 and Cdc20.
Thus, Mad2DC must be associated with the complex by
binding to Mad2. The Mad2R133E-Q134A mutant is
incapable of forming oligomers [62] and was found to
be unable to bind to the Mad1–Mad2 complex. When the
Alexa Fluor 488-labeled Mad2R133E-Q134A mutant was
injected into PtK1 cells, it failed to localize to
unattached kinetochores. By contrast, the Mad2DC
mutant retained its ability to bind to kinetochores
despite losing its ability to bind Mad1 (and Cdc20).
Functionally, neither of the Mad2 mutants retained
checkpoint activity in vivo [61,65–68]. These results,
combined with the in vitro data, strongly suggest that
Mad2 dimerization is likely to occur at kinetochores and
is an important feature of its checkpoint activity.

By extension, the initial C-Mad2–Cdc20 complex that is
released from the kinetochore is speculated to further
catalyze the conversion of the cytosolic pool of O-Mad2 into
the inhibitory C-Mad2. This proposed prion-like activity of
Mad2 provides a mechanism that exponentially amplifies
the signal that was initiated at the unattached kineto-
chore. Silencing of this pathway is believed to rely on
p31comet (CMT2), a protein that promotes mitotic exit by
selective binding to C-Mad2 and release of Cdc20 to
activate the APC/C [69]. For both the Exchange and
Template models, unattached kinetochores are proposed
to convert the cytosolic pool of Mad2 into a form that can
sequester Cdc20, preventing activation of the APC/C.
While this model fits the in vitro data, the existence of
alternative conformers of native Mad2 remains to be
demonstrated. Regardless, the mechanism by which the
kinetochore generates the ‘wait anaphase’ signal is likely
to bemore complex as it must take into account the roles of
other checkpoint proteins.

The Two-step model

An alternative view proposes that kinetochores might not
have to directly generate the inhibitor of the APC/C
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(Mad2-sequestering Cdc20). Instead, the ‘wait anaphase’
signal sensitizes the APC/C to inhibition by a factor that
acts independently of kinetochores. This Two-step model
(kinetochore-dependent and -independent) was proposed
based on the discovery of the mitotic checkpoint complex
(MCC) [70]. The MCC was identified in a biochemical
screen for factors in HeLa cells that can inhibit the APC/C.
The MCC consists of BubR1, Bub3, Cdc20 and Mad2 in
near-equal stoichiometry and is several orders of magni-
tude more potent at inhibiting the APC/C than the
recombinant Mad2 that was used in all other studies.
Unexpectedly, MCC was found to be present and active
even in interphase cells, when the mature kinetochore has
not yet assembled. Thus, MCC formation and activity does
not depend on kinetochores. Importantly, MCC was found
to selectively inhibit APC/C that was purified from mitotic
cells. This contrasts with other studies that showed that
recombinant Mad2 and BubR1 were only effective against
interphase, but not mitotic, APC/C [71].

The existence of the MCC during interphase provides
the cell with a rapid mechanism to inhibit the APC/C
when cells enter mitosis. By necessity, the affinity between
MCC and APC/C cannot be very high as the inhibition
must be reversible in order for cells to exit mitosis. The
role of the kinetochore is to provide a signal that
maintains the interaction between the MCC and the
APC/C. This was supported by reconstitution experiments
that suggested that kinetochores might act on the APC/C
to sensitize it to prolonged inhibition by the MCC [70].
This possibility is consistent with the recent finding that
subunits of the APC/C are preferentially associated with
kinetochores [72–74]. While these observations suggest
that the APC/C might be directly modified by the
kinetochore, it will be important to examine the dynamics
of its interactions.

Evidence supporting the existence of a kinetochore-
independent inhibitor of the APC/C has come from several
studies. As discussed previously, the assembly of the
checkpoint proteins Mad1, Mad2 and Mps1, but not
BubR1 and Bub1, depends on CENP-I and HEC1
(Figure 1b). Interestingly, cells whose kinetochores were
selectively depleted of these proteins were able to delay
mitosis in the presence of unaligned chromosomes.
Importantly, the delay was still dependent on Mad2
despite the fact that its level at kinetochores had been
reduced 10 to 20 fold [13,75]. This result is consistent with
the presence of a kinetochore-independent inhibitor of the
APC/C, such as the MCC. Additional evidence for a two-
step model came from a detailed comparison of the mitotic
timing of HeLa cells that were depleted of various
checkpoint proteins [76]. This study showed that selective
depletion of Bub1, Bub3 and Mad1 checkpoint proteins
from kinetochores did not significantly alter the time cells
spent in mitosis. Mitotic timing (from nuclear envelope
breakdown to anaphase A) was accelerated (from
w25 min to 12 min) only when either BubR1 or Mad2
was directly depleted from the cell. This finding also
confirmed earlier reports that showed direct inhibition of
BubR1 and Mad2 by antibody injections caused cells to
accelerate through mitosis [66]. This study concluded that
BubR1 and Mad2 act independently of kinetochores to
www.sciencedirect.com
establish the time cells spend in mitosis, regardless of the
status of chromosome alignment. The role of unattached
kinetochores is to lengthen this time, perhaps by
sensitizing the APC/C to prolonged inhibition by BubR1
and Mad2 (MCC) or by generating an additional pool of
inhibitor (Mad2).

The MCC appears to be evolutionarily conserved as it
has been identified in budding yeast [77], fission yeast [78]
and in Xenopus [79]. Interestingly, formation of the yeast
MCC was found also to be independent of the kinetochore
[80]. By contrast, the formation of the MCC in Xenopus
egg extracts depends on kinetochores [79]. The reason for
this discrepancy is unclear but might be due to inherent
differences in the mechanisms that control the somatic
and embryonic cell cycles. It will be important to test
whether these complexes are competent to inhibit the
APC/C that is purified from mitotic cells.
Concluding remarks

The past few years have witnessed an explosion in the
number of newly identified kinetochore proteins in yeast
and other organisms (Figure 2). The increase in the
complexity, in terms of size and function, of the vertebrate
kinetochore likely arose in response to the expansion of
the genome as well as the transition from a closed to an
open mitosis. Interestingly, these changes have not
required drastic alterations in kinetochore architecture
but rather appear to have evolved by accessorizing the
primordial kinetochore. The finding that many proteins
are conserved suggests a common core that, in ver-
tebrates, has been expanded to accommodate newly
evolved proteins that are essential for accurate chromo-
some segregation. This expansion appears to have been
achieved in part by simply replicating the core module to
generate a string of modules that is organized into a
cytologically visible structure. This concept is rooted in a
model described by Brinkley and colleagues nearly 15
years ago when they presented evidence that mammalian
kinetochores might be assembled from a repeat structure
[7]. This idea might actually be extended to explain the
curious observation that kinetochores in budding yeast
appear to be clustered into a single focus rather than
dispersed. If yeast kinetochores are indeed physically
linked to one another, their interactions might form the
foundations for how complex kinetochores evolved.

The list of kinetochore proteins that have been
identified is impressive. The question that naturally
arises has to be: how many more proteins are left to be
discovered? The answer is obviously not known, but this
question should stimulate efforts to reconstitute kineto-
chore assembly in vitro. While this is a daunting task,
identifying proteins that physically interact with each
other is an important first step. The ability to reconstitute
and analyze subcomplexes in vitro, whose interactions are
validated in vivo, would represent a major step forwards
towards realization of this goal [8]. These efforts might
also be of practical use as they might provide in vitro
assays to screen for novel inhibitors of kinetochore
assembly. Chemical inhibitors should provide new tools
and expand our capabilities to investigate the dynamic
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properties of kinetochores as well as being utilized as
novel drugs that specifically inhibit mitosis.
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