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Abstract

The mitotic checkpoint functions to ensure accurate chromosome segregation by regulating the progression from
metaphase to anaphase. Once the checkpoint has been satisfied, it is inactivated in order to allow the cell to proceed into
anaphase and complete the cell cycle. The minus end-directed microtubule motor dynein/dynactin has been implicated in
the silencing of the mitotic checkpoint by ‘‘stripping’’ checkpoint proteins off kinetochores. A recent study suggested that
Nordihydroguaiaretic acid (NDGA) stimulates dynein/dynactin-mediated transport of its cargo including ZW10 (Zeste White
10). We analyzed the effects of NDGA on dynein/dynactin dependent transport of the RZZ (Zeste White 10, Roughdeal,
Zwilch) complex as well as other kinetochore components from kinetochores to spindle poles. Through this approach we
have catalogued several kinetochore and centromere components as dynein/dynactin cargo. These include hZW10,
hZwilch, hROD, hSpindly, hMad1, hMad2, hCENP-E, hCdc27, cyclin-B and hMps1. Furthermore, we found that treatment with
NDGA induced a robust accumulation and complete stabilization of hZW10 at spindle poles. This finding suggests that
NDGA may not induce dynein/dynactin transport but rather interfere with cargo release. Lastly, we determined that NDGA
induced accumulation of checkpoint proteins at the poles requires dynein/dynactin-mediated transport, hZW10
kinetochore localization and kinetochore-microtubule attachments but not tension or Aurora B kinase activity.
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Introduction

Accurate segregation of chromosomes during mitosis is required

for the maintenance of genomic stability. Failure or improper

execution of mitosis is catastrophic for individual cells as well as a

potential precursor to malignancy. The mis-segregation of even

one chromosome can negatively impact cell survival or conversely

lead to mis-regulation of cell growth. Numerous human cancers

have been associated with elevated levels of aneuploidy that are

thought to result from chromosome mis-segregation (for a review

see reference[1]). In order to avoid aneuploidy, a surveillance

mechanism, the mitotic checkpoint, monitors and ensures accurate

chromosome segregation. The mitotic checkpoint ensures accurate

chromosome segregation by preventing the progression from

metaphase into anaphase (reviewed in[2,3]). In general, the

checkpoint arrests cells in mitosis until all chromosomes have

aligned at the metaphase plate. Chromosome alignment depends

on the attachment of microtubules (MTs) emanating from spindle

poles to kinetochores on chromosomes (reviewed in[4]). As such,

the checkpoint directly monitors for kinetochore-MT (k-MT)

attachments and initiates mitotic arrest in their absence. The

mitotic checkpoint directly inhibits the Anaphase Promoting

Complex/Cyclosome (APC/C), an E3 ubiquitin ligase, which is

responsible for targeting cyclin B and securin for degradation

through the 26S proteasome.[5,6] Inhibition of the APC/C

ensures that sister chromatids remain physically connected and

that Cdk1 activity remains high. All known essential components

of the mitotic checkpoint localize to kinetochores in response to

mitotic checkpoint signaling.[3] However, certain kinetochore

checkpoint proteins are also known to transiently localize to

spindle poles through dynein/dynactin-mediated transport off

kinetochores and along k-MTs.[7] Moreover, the APC/C as well

as cyclin B are known to reside on spindle poles during mitosis and

cyclin B degradation during the metaphase-anaphase transition

occurs specifically at spindle poles and the mitotic spindle.[8,9,10]

The localization of mitotic checkpoint components on the spindle

and spindle poles is therefore an essential component of mitotic

checkpoint signaling and silencing.
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It has been recently shown that treatment with the small

molecule Nordihydroguaiaretic acid (NDGA) results in the

accumulation of human Zeste White 10 (hZW10) at centrosomes

and spindle poles.[11] hZW10 is a component of the evolution-

arily conserved Roughdeal (hROD), ZW10, Zwilch (RZZ)

complex that is known to transport along k-MTs off kinetochores

and onto spindle poles via dynein/dynactin.[12,13,14,15] Fur-

thermore, the RZZ complex is an essential component of the

mitotic checkpoint whose kinetochore residency dynamics regulate

its function.[16,17] hZW10 and hROD are known to transiently

localize to spindle poles during prometaphase and meta-

phase,[13,18,19] however, the amount of hZW10 associated with

the spindle poles appears significantly increased in the presence of

NDGA.[11] Initial studies of NDGA showed that it can enhance

the interaction between dynein/dynactin and its cargo, such as

hZW10, although the molecular mechanism of its action remains

unknown.[11] In our current study we used NDGA to examine

the transport of the RZZ complex off kinetochores and onto

spindle poles. Furthermore, we also characterized several

kinetochore and centromere components for their ability to be

transported by dynein/dynactin in the presence of NDGA. Our

results indicate that transport of the RZZ complex requires k-MT

attachments (monopolar or bi-polar), but not tension or Aurora B

kinase function. Furthermore, we find that NDGA treatment

results in the stabilization of EGFP-hZW10 at spindle poles

suggesting that NDGA may interfere with the release of dynein/

dynactin cargo at spindle poles. Lastly, we find that several well

established mitotic checkpoint signaling components are also

transported off kinetochores in the presence of NDGA.

Results

hZW10 is a dynamic resident of mitotic spindle poles
ZW10 is known to localize to spindle poles during mitosis in

human and Drosophila cells.[7,20,21] In order to analyze the

localization pattern of hZW10 at spindle poles in live cells we took

advantage of a HeLa cell line stably expressing EGFP-

hZW10.[17] Using live cell time-lapse microscopy we observed

that EGFP-hZW10 began to accumulate at kinetochores during

prophase, immediately after nuclear envelope breakdown, but did

not localize to the spindle poles until prometaphase (Figure 1A).

Once all the chromosomes were aligned at the metaphase plate,

EGFP-hZW10 vacated both the kinetochores and spindle poles.

The behavior of EGFP-hZW10 in live cells was consistent with

endogenous hZW10 as monitored through immunofluorescence

(Figure 1B).

In order to determine the conditions under which hZW10 is

able to localize to the spindle poles, HeLa cells were treated with

several common inhibitors of mitotic spindle function. These

included: vinblastine,[22] to depolymerize microtubules and thus

remove k-MT attachment; S-trityl-L-cystine (STLC),[23] an Eg5

kinesin inhibitor to generate monopolar spindles and therefore

monopolar k-MT attachments; MG132,[24] to inhibit the

proteasome and arrest the cells in late metaphase; as well as

MG132 followed by low dose taxol, which inhibits MT dynamics

and therefore abolishes tension between fully aligned sister

kinetochores.[16] hZW10 only localized to the spindle poles, as

confirmed by co-staining with pericentrin, during the STLC and

MG132 + taxol treatments (Figure 1C) indicating that spindle pole

localization is restricted to checkpoint active cells with established

k-MT attachments. Our results indicate that hZW10 spindle pole

localization requires k-MT attachments, but the localization is

diminished once chromosome alignment and inter-kinetochore

tension is achieved. The requirements for hZW10 spindle pole

localization findings are similar to the requirements for dynein/

dynactin dependent transport of checkpoint proteins off kineto-

chores.[15,25]

Lastly, we also analyzed the dynamics of EGFP-hZW10 at

spindle poles using the Fluorescence Recovery After Photobleach-

ing (FRAP) technique. We found that EGFP-hZW10 is a dynamic

component of the spindle pole during both prometaphase and

metaphase with 50% fluorescence recovery times (t1/2) of 27.7 +/

2 11.1 seconds (n = 30) and 23.9 +/2 8.7 seconds (n = 10)

respectively (Figure 1D). The observed behaviour of hZW10 at the

spindle pole indicates it is a dynamic component which vacates the

spindle pole soon after it arrives there.

NDGA induces transport, stabilization and accumulation
of hZW10 at spindle poles

Recently, it has been shown that NDGA can induce the

transport of hZW10 to spindle poles and centrosomes by

stabilizing the interaction between hZW10 and dynein/dynac-

tin.[11] Although the effect of NDGA on dynein/dynactin

transport has not been investigated directly, the observed effect

of NDGA on the accumulation of dynein/dynactin and hZW10 at

spindle poles during mitosis is clear.[11] As such, we were

interested in investigating the mechanism as well as consequence(s)

of hZW10 spindle pole accumulation. To do so, we first confirmed

the NDGA phenotype by treating HeLa cells with 30 mM NDGA

and analyzing hZW10 and pericentrin localization by immuno-

fluorescence staining. After 30 minutes of NDGA treatment,

hZW10 was accumulated at spindle poles in all but prophase

mitotic cells (Figure 2A). Moreover, hZW10 was not observed at

kinetochores and appeared to be reduced in the cytoplasm in the

presence of NDGA. Fluorescence intensity measurements indicat-

ed that in the presence of NDGA, hZW10 spindle pole occupancy

increased from ,8.5% of total hZW10 normally found at

prometaphase and metaphase spindle poles to ,20%. This

constitutes an approximate 2.35 fold increase of hZW10 at spindle

poles and was found to be NDGA concentration dependent

(hZW10 pole occupancy of 8.162.1% for 10 mM, 11.364. 5% for

15 mM and 22.462.7% for 30 mM). The spindle pole accumula-

tion of hZW10 is unlikely the result of the lipoxygenase activity of

NDGA as two additional lipoxygenase inhibitors, PD 146176 and

Caffeic acid phenethyl ester, were tested and did not induce

accumulation of hZW10.

Having established that NDGA can induce hZW10 accumula-

tion at the spindle poles, we used time-lapse fluorescence

microscopy to monitor this in live cells. Using EGFP-hZW10

expressing HeLa cells, we monitored the dynamics of NDGA-

induced EGFP-hZW10 transport to the spindle poles in both

prometaphase and metaphase (Figure 2C). Our live cell imaging

confirmed that NDGA treatment results in the accumulation of

EGFP-hZW10 at the spindle poles (Movie S1). The observed

accumulation of EGFP-hZW10 began to occur within ,10

minutes of NDGA addition in both prometaphase and metaphase

cells. Examination of cells 15 minutes after NDGA addition by

either immunofluorescence or live cell microscopy revealed

punctate staining between the kinetochore and the spindle pole

indicative of ‘shedding’ along microtubules (Figure 3 and Movie

S2). The rate of movement of the EGFP-hZW10 foci towards the

spindle pole was calculated to be between 0.098 mm per second

and 0.123 mm per second. The rate of transport is higher than

previously reported for mammalian cells[26,27] but lower than

that reported for GFP-Rod in syncytial Drosophila embryos.[12]

We used FRAP to determine whether the NDGA-dependent over-

accumulation of hZW10 at spindle poles is a result of changes in

the turn-over of the protein at spindle poles. FRAP analysis

Transport of Kinetochore Proteins to Spindle Poles
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Figure 1. hZW10 transiently localizes to spindle poles during mitosis. A) HeLa cells stably expressing EGFP-hZW10 were imaged using a
spinning disk confocal microscope. Selected maximum projections of 20 1 mm Z-stacks collected every 30 seconds are displayed. EGFP-hZW10 is
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revealed that, while EGFP-hZW10 was highly dynamic at spindle

poles in untreated cells (Figure 1D), NDGA treatment stabilized

hZW10 at the spindle pole during both prometaphase and

metaphase (Figure 2D). We thus conclude that the accumulation

of hZW10 at spindle poles in the presence of NDGA occurs

because hZW10 is unable to dissociate from the spindle pole.

Inhibition of dynein/dynactin kinetochore localization by

injection of p50/dynamitin has been shown to prevent relocaliza-

tion of kinetochore proteins Mad2, BubR1 and CENP-E to the

spindle pole in ATP depleted cells.[7] To examine if dynein/

dynactin was required for the accumulation of hZW10 at the

poles, we overexpressed hp50/dynamitin[28] through transient

transfection of a 3X Flag-hp50/dynamitin construct. Cells with a

high level of 3X Flag-hp50 showed aberrant spindle morphology

as previously described[7] and when treated with NDGA, hZW10

was observed to remain at the kinetochore. Cells on the same slide

treated with NDGA but exhibiting low or no transfection with the

3X Flag- hp50/dynamitin construct showed accumulation of

hZW10 at the poles (Figure 2B). This indicates that the NDGA

induced accumulation of hZW10 at spindle poles is a dynein/

dynactin dependent process.

Kinetochore localization and k-MT attachments are
required for hZW10 spindle pole localization

Having determined that NDGA can be used to study hZW10 at

spindle poles in living cells, we next set out to analyze whether

NDGA induced spindle pole accumulation of hZW10 was

restricted to conditions when hZW10 was observed at the spindle

pole without NDGA treatment (discussed above). EGFP-hZW10

expressing cells were pretreated with various inhibitors of spindle

function followed by NDGA in live cells. Following NDGA

addition EGFP-hZW10 readily accumulated at spindle poles in

cells pre-treated with STLC, MG132, MG132 + taxol and

ZM447439 (Aurora B kinase inhibitor) but not in those pre-treated

with vinblastine (Figure 4A, 4B). hZW10 was not observed at the

kinetochore or the spindle pole in MG132 or ZM447439 treated

cells however the addition of NDGA resulted in EGFP-hZW10

spindle pole accumulation indicating that NDGA is able to induce

spindle pole accumulation under conditions when hZW10 would

not normally be observed at the kinetochore or spindle pole.

Pretreatment with STLC or MG132 did not affect the dynamics

or occupancy of hZW10 spindle pole accumulation from those

observed for NDGA treated prometaphase and metaphase cells

(Figure 4C). On the other hand, some EGFP-hZW10 still

remained at kinetochores in MG132 + taxol pre-treated cells,

even after 25 minutes of NDGA treatment (Figure 4A middle

panel) and the spindle pole occupancy of hZW10 is reduced

(Figure 4C). hZW10 localizes to both spindle poles and

kinetochore during early and tensionless metaphase indicating it

is not an artifact of NDGA treatment (Figure 1B, 1C). This

suggests that inter-kinetochore tension, and or k-MT dynamics

influence the ability of hZW10 to be released from kinetochores.

To determine whether NDGA itself had an affect on k-MT

attachments or inter-kinetochore tension we examined cold stable

k-MT attachments and observed no obvious changes in cells

treated with NDGA (Figure S1A). NDGA treatment also had no

effect on k-MT attachments as observed by electron microscopy

(Figure S1B). Additionally, we found that tension, as measured by

inter-kinetochore distance in MG132 treated cells, did not differ

significantly upon 30 minute NDGA treatment (MG132: 1.80 +/

2 0.21 mm, n = 76 vs MG132 + NDGA: 1.83 +/2 0.34 mm,

n = 76).

We confirmed our live cell experiments by repeating the

aforementioned treatments and analyzing the behavior of

endogenous hZW10 by immunofluorescence staining (Figure 4B).

When measuring hZW10 accumulation at the spindle poles, cells

pre-treated with STLC or MG132 and then NDGA, exhibited up

to 20% of total hZW10 accumulation at spindle poles. This

constitutes a ,2.35 fold increase when STLC pretreated cells are

compared to prometaphase cells without NDGA treatment and a

,2.15 fold increase for cells pretreated with MG132 compared to

metaphase cells without NDGA treatment (Figure 4C). However,

cells pre-treated with MG132 + taxol and then NDGA

accumulated only ,15% of total hZW10 at the spindle poles.

This amounts to a ,1.6 fold increase when compared to

metaphase without NDGA treatment, and again suggests that

inter-kinetochore tension may regulate hZW10 transport off

kinetochores. These findings are in agreement with our previous

studies showing that hZW10 kinetochore dynamics are regulated

by bi-polar k-MT attachments and inter-kinetochore ten-

sion.[16,17] Based upon our live cell and immunofluorescence

results, we conclude that hZW10 spindle pole localization requires

k-MT attachments and may also be regulated by inter-kinetochore

tension.

In our previous studies we generated and characterized a

collection of hZW10 mutants that either no longer localize to

kinetochores or are unable to interact with hZwint-1.[17] To test

whether kinetochore localization is necessary for spindle pole

localization we subjected cells transfected with one of the

kinetochore non-localization mutants (insertion mutant J: insertion

of LRPQL at amino acid 248; or truncation C5: 1–410 amino

acids) to NDGA treatment. Fluorescence microscopy revealed that

in the presence of NDGA, EGFP-hZW10 J and EGFP-hZW10 C5

did not accumulate at the spindle poles (Figure 5B). Therefore, we

deduce that hZW10 spindle pole localization requires kinetochore

localization prior to transport. The dynamics of hZW10 are

regulated by tension as well as by interaction with hZwint-1. In

our previous study we found that a subset of hZW10 mutants

which were unable to interact with hZwint-1 were still able to

observed to first localize to kinetochore upon nuclear envelope breakdown in prophase and subsequently to the spindle poles starting in
prometaphase. Kinetochore and spindle pole associated EGFP-hZW10 remains until all the chromosomes become aligned in metaphase. Upon
anaphase onset, EGFP-hZW10 is not detected at kinetochores or spindle poles. Time is shown in minutes:seconds, scale bar = 10 mm. B) HeLa cells in
late G2 (L G2) or the different stages of mitosis are stained for hZW10, pericentrin (as a spindle pole marker), and ACA. hZW10 is observed to localize
to kinetochores and spindle poles in prometaphase (PM) and early metaphase (EM). hZW10 no longer localizes to the spindle poles during late
metaphase (LM) and in anaphase (A). Pericentrin is observed to stain the spindle poles in all stages of mitosis. Chromosomes are stained with DAPI.
Scale bar = 10 mm. C) HeLa cells treated with 0.5 mM vinblastine, 7 mM STLC, 12.5 mM MG132 and or 12.5 mM MG132 + 1 mM taxol were stained for
hZW10 and pericentrin localization. hZW10 is observed to localize to spindle poles in cells treated with STLC and MG132 + taxol. hZW10 was,
however, absent from spindle poles of cells treated with vinblastine or MG132 alone. Pericentrin was observed to stain the spindle poles in all of the
treated cells. Chromosomes are stained with DAPI. Scale bar = 10 mm. D) HeLa cells stably expressing EGFP-hZW10 were analyzed for turnover of
EGFP-hZW10 at the spindle poles using FRAP. White circles indicate the spindle pole bleached which is enlarged in the insets. Time-lapse images of
the recovery after photobleaching indicate that in both prometaphase (top) and metaphase (bottom) EGFP-hZW10 is dynamic at the spindle poles.
On the right is a % recovery graph of EGFP-hZW10 at spindle poles showing no difference between the recovery of EGFP-hZW10 at prometaphase
(red) or metaphase (blue) spindle poles. Large scale bar = 10 mm, small scale bar = 2 mm.
doi:10.1371/journal.pone.0016494.g001
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localize to the kinetochore. Further analysis of truncation N1 (52–

779 amino acids) revealed that although it was able to localize to

the kinetochore with the same timing as the wild type protein it

had altered FRAP dynamics and impaired checkpoint activity.[17]

As such we examined cells transfected with one of our hZwint-1

non-interacting mutants which are able to localize to the

kinetochore (truncation N1: 52–779 amino acids; truncation N2:

75–779 amino acids; or site-directed mutant: DI69AA) for their

ability to accumulate at the spindle pole following NDGA

treatment. Fluorescence microscopy revealed that in the presence

of NDGA, EGFP-hZW10 N1, EGFP-hZW10 N2 and EGFP-

hZW10 DI69AA were able to localize to the spindle pole but had

reduced accumulation at the spindle poles compared to wild-type

hZW10 (Fl: 1–779 amino acids) and retained visible kinetochore

staining (Figure 5B). This indicates that these mutants are able to

be transported but may not stably accumulate at the poles.

NDGA induces the transport of RZZ complex
components but not the scaffold protein hZwint-1

hZW10 is part of the evolutionarily conserved RZZ complex,

which includes hZW10, hROD and hZwilch.[14,20] To date, the

function of the complex has been shown to be interdependent on

all of its components.[13,18,29] We therefore analyzed whether

hROD behaved similarly to hZW10 upon treatment with NDGA.

Immunofluorescence staining of hROD at spindle poles upon

NDGA treatment suggests that the entire RZZ complex

accumulates at spindle poles in the presence of NDGA

(Figure 6A, S2). We confirmed this by examining hZwilch and

found it also accumulates at spindle poles following NDGA

treatment (data not shown). In addition to the RZZ components,

hZW10 is also known to interact with hZwint-1 and dynamitin

(hp50).[30,31] We therefore analyzed whether hZwint-1 and hp50

behave similarly to hZW10 in response to NDGA treatment. Our

results show that hp50 but not hZwint-1 accumulates at spindle

poles in the presence of NDGA (Figure 6A, S2). Additionally, we

also determined the localization of dynein intermediate chain

(hdIC) in the presence of NDGA and found that it also

accumulated at spindle poles (Figure 6A, S2). Since dynein/

dynactin mediated transport is the only mechanism known to be

responsible for RZZ spindle pole accumulation,[12] our data

suggests that NDGA induces the accumulation of the entire RZZ

complex at the spindle poles through dynein/dynactin mediated

transport.

Dynein/dynactin transports a subset of mitotic
checkpoint proteins from kinetochores to spindle poles

There are several mitotic checkpoint proteins, that similar to

hZW10 and hROD, are thought to be transported from

kinetochores to spindle poles via dynein/dynactin.[7,32] Reason-

ing that bona fide dynein/dynactin cargoes would be expected to

accumulate at spindle poles upon exposure to NDGA we screened

an array of mitotic checkpoint proteins for their response to

NDGA. We first examined hBubR1, hBub1, hCENP-E and

hMad2, of which, hBubR1, CENP-E and hMad2 have previously

been implicated as cargo of dynein/dynactin dependent trans-

port.[7] Upon treatment with NDGA, we observed that hCENP-E

and hMad2 accumulated at the spindle poles, while hBubR1 and

hBub1 did not (Figure 6B, 6C, S3). After 30 minutes of NDGA

treatment, hMad2 accumulation at spindle poles mirrored that of

hZW10 in prometaphase (Figure 5C). The immunofluorescence

results were confirmed by time-lapse fluorescence microscopy of

HeLa cells transiently transfected with the corresponding YFP and

GFP fusion constructs (Figure S6). When we extended our NDGA

assay to test for the transport of other mitotic checkpoint proteins

off kinetochores, we found that hMad1, hMps1, hSpindly, hCdc27

and cyclin-B were also transported by dynein/dynactin to the

spindle poles (Figure 6B, S4). We also found kinetochore proteins

that were insensitive to NDGA induced transport. These included:

ACA (anti-centromere antigen: CENP-A, B and C), hCENP-F,

hAurora-B, hCdc20, hMCAK, hPlk1 and hHec1 (Figure 6C, S5).

To show that the NDGA induced transport of checkpoint

proteins was indeed dynein/dynactin dependent, we depleted cells

of hZW10 and thus disrupted the recruitment of dynein/dynactin

to the kinetochores.[33] In hZW10 depleted cells, neither hROD,

hMad2 nor hCENP-E were not found at spindle poles following

NDGA treatment (Figure 5A). Furthermore, in HeLa cells co-

expressing EGFP-hZW10 and mCherry-hMad2, NDGA selec-

tively transported mCherry-hMad2 to spindle poles in prometa-

phase but not MG132 arrested cells (Figure 5C). This indicates

that NDGA does not interfere with k-MT attachment and does

not result in the re-recruitment of hMad2 to kinetochores.

Our use of NDGA to characterize dynein/dynactin mitotic

cargo is an extension of previous work from Ted Salmon’s lab

which identified several dynein/dynactin cargo through the use of

ATP depletion.[7] This current study confirmed that hMad2, and

hCENP-E are dynein/dynactin cargo and identified hSpindly,

hCdc27, cyclin-B, the RZZ complex and the hMps1 kinase as

additional cargo. Moreover, we were also able to categorize

several kinetochore components which are not dynein/dynactin

cargo including hHec1, hMCAK, hAuroraB, hBubR1, hBub1,

hZwint-1, hPlk1, hCENP-F and hCdc20.

Discussion

During mitosis hZW10 localizes to kinetochores from late

prophase through early metaphase and to the spindle pole in late

prometaphase and early metaphase (Figure 1A, 1B). Our previous

work indicated that hZW10 is a dynamic component of metaphase

kinetochores[17] and here, using FRAP, we show that hZW10 is

also a dynamic component of spindle poles in both prometaphase

and metaphase (Figure 1D). While kinetochore localization of

hZW10 is independent of k-MTs, spindle pole localization

depends on the establishment of k-MT attachment. This is most

Figure 2. NDGA induced hZW10 accumulation at spindle poles is stable and requires dynein/dynactin dependent transport. A) HeLa
cells treated with 30 mM NDGA for 30 minutes and stained with hZW10, pericentrin and ACA antibodies. hZW10 localizes to the kinetochore in
prophase (P) and co-localizes with pericentrin during prometaphase (PM), metaphase (M) and anaphase (A). Chromosomes are stained with DAPI.
Scale bar = 10 mm. B) HeLa cells transiently transfected with 3X Flag-hp50 for 24 hours and then treated with 30 mM NDGA for 30 minutes. Coverslips
were labeled with antibodies against hZW10, Flag and Tubulin and chromosomes are stained with DAPI. hZW10 was not able to accumulate at
spindle poles when dynein/dynactin function is disrupted. Scale bar = 10 mm. C) HeLa cells stably expressing EGFP-hZW10 were treated with 30 mM
NDGA and immediately imaged using the spinning disk confocal microscope. Maximum projections of ,20 1 mm Z-stacks are shown. EGFP-hZW10 is
transported to the spindle pole within minutes of adding NDGA in both prometaphase (top) and metaphase (bottom). Time shown as
minutes:seconds, scale bar = 10 mm D) HeLa cells stably expressing EGFP-hZW10 were treated with 30 mM NDGA for 30 minutes and analyzed for
turnover of EGFP-hZW10 at the spindle poles using FRAP. White circles indicate the spindle pole bleached which is enlarged in the insets. Time-lapse
images of the recovery after photobleaching indicate that in the presence of NDGA EGFP-hZW10 is not dynamic at either prometaphase (top) or
metaphase (bottom) spindle poles. The percent recovery graph is shown to the right. Large scale bar = 10 mm, small scale bar = 2 mm.
doi:10.1371/journal.pone.0016494.g002

Transport of Kinetochore Proteins to Spindle Poles

PLoS ONE | www.plosone.org 6 January 2011 | Volume 6 | Issue 1 | e16494



Transport of Kinetochore Proteins to Spindle Poles

PLoS ONE | www.plosone.org 7 January 2011 | Volume 6 | Issue 1 | e16494



apparent when examining hZW10 localization upon treatment

with the MT depolymerizing compound vinblastine, where

hZW10 is clearly localized to kinetochores but completely absent

from spindle poles. Conversely, treatment with STLC or MG132

+ low-dose taxol did not affect hZW10 spindle pole localization

(Figure 1C).

A previously published study indicated that hZW10 spindle pole

localization could be enhanced by treatment with the lipoxygenase

inhibitor NDGA.[11] Indeed, treatment with NDGA resulted in

spindle pole accumulation of hZW10 to higher levels than

normally observed (Figure 2A, 2C). Furthermore, FRAP of spindle

pole associated EGFP-hZW10 indicated that in the presence of

NDGA EGFP-hZW10 becomes completely stable at spindle poles

(Figure 2D). Interestingly, NDGA also induced hZW10 spindle

pole accumulation in late metaphase, a time when hZW10 is

clearly absent from kinetochores and spindle poles in control cells.

The ability of NDGA to induce spindle pole accumulation of

hZW10 in late metaphase implies that hZW10 kinetochore and

spindle pole levels are extremely low and/or highly dynamic

during this stage of mitosis. Furthermore, it implies that hZW10 is

still being transported onto the spindle pole even though the

mitotic checkpoint has been silenced.

NDGA may be affecting the ability of the RZZ complex to

dissociate from the spindle pole, perhaps by directly stabilizing its

interaction with dynein/dynactin. Interestingly, our NDGA results

are similar to those of ATP depletion studies where mitotic

checkpoint proteins are also observed to accumulate at spindle

poles.[7,32,34] NDGA has been shown to reduce cellular ATP

levels to 40% of control cells 30 minutes after treatment[35] and

might therefore affect ATP-dependent processes involved in the

release of checkpoint proteins from spindle poles. We do not

believe this is the case as the addition of an ATP regeneration

system did not prevent NDGA induced hZW10 accumulation at

centrosomes in interphase cells.[11] Another possibility is that

NDGA may be affecting the modification or stabilization of MTs.

NDGA has been shown to protect MTs from depolymerizing

agents such as vinblastine[36] and preliminary computational

modeling experiments show direct binding of NDGA to MTs

(personal communication with Dr. J. Tuszynski, University of

Alberta). This stabilization/modification of MTs may prevent

release of dynein/dynactin and its cargos from the spindle pole

resulting in the stable association observed for EGFP-hZW10.

To address the mechanism involved in NGDA-induced spindle

pole accumulation of hZW10, we analyzed hZW10 mutants[17]

that are unable to localize to kinetochores and observed no spindle

pole accumulation (Figure 5B). We also found that hZW10

mutants which were able to localize to the kinetochore but unable

to interact with hZwint-1 had altered spindle pole accumulation.

The hZwint-1 non-interacting mutant N1 has been previously

shown to be dynamic at prometaphase kinetochores compared

with stable wild type hZW10.[17] Because N1 is more dynamic at

prometaphase we expected it would have faster and greater

accumulation at spindle poles following NDGA treatment,

however, we actually observed reduced spindle pole accumulation.

The truncated protein is still transported to the spindle pole but

the reduced accumulation may indicate that it is not stably bound

at the pole. While this mutant is unable to interact with hZwint-1 it

is unlikely that hZwint-1 is involved in stable attachment of

hZW10 at the spindle pole as hZwint-1 does not localize there.

The domain of hZW10 required for hZwint-1 interaction may

therefore be involved in binding at the spindle pole. Alternatively,

hZW10 interaction with hZwint-1 may prime hZW10 for

transport to the spindle pole or its retention there.

Arasaki et al. showed that NDGA induced centrosomal

accumulation of hZW10 in interphase is dependent on dynein/

dynactin.[11] Our study confirmed that NDGA induced accumu-

lation of hZW10 at the spindle poles in mitosis is dynein/dynactin

dependent. Disrupting dynein/dynactin function by hp50/dyna-

mitin overexpression[28] completely abolished hZW10 accumu-

lation at spindle poles following NDGA treatment (Figure 2B).

Furthermore, inhibiting dynein/dynactin recruitment to the

kinetochore with siRNA-mediated hZW10 depletion[33] prevent-

ed NDGA-induced spindle pole accumulation of hMad2, hROD

or hCENP-E (Figure 5A). Pre-treating cells with vinblastine, to

depolymerize all k-MTs, also prevented accumulation of hZW10

at the poles of NDGA treated cells (Figure 4A, 4B), thus

confirming that kinetochore proteins are transported to the poles

by dynein/dynactin mediated transport along k-MTs and not

directly recruited to the spindle poles. This was also observed

directly by live cell imaging of streaming of EGFP-hZW10 to the

spindle poles following NDGA treatment (Figure 3, Movie S2).

Using NDGA we have been able to identify a subset of

kinetochore proteins, in addition to hZW10, that are transported

off kinetochores by dynein/dynactin as well as those that are not

(Figure 6). As expected the dynein/dynactin components hdIC

and hp50/dynamitin accumulated at the spindle poles in NDGA

treated cells. We also found that the RZZ complex (hZW10,

hROD and hZwilch) and its newly identified partner hSpindly also

accumulated at spindle poles following NDGA treatment. In

addition to the RZZ complex, we also observed hMad1, hMad2

and hCENP-E spindle pole accumulation after NDGA treatment.

Our findings confirm previous studies showing the streaming of

hMad2 along k-MTs[26] as well as observed spindle pole

localization of Mad1,[37] and ATP depletion studies showing

spindle pole accumulation of Mad2 and CENP-E.[7] Additionally,

we found that hMps1, hCdc27 and cyclin-B also accumulate at

spindle poles in the presence of NDGA. Surprisingly, NDGA did

not induce spindle pole accumulation of hCdc20, which is

observed at spindle poles in mitosis,[38,39] or hBubR1, which

has been shown to accumulate at spindle poles after ATP

depletion.[7] It is unclear whether this discrepancy is due to

differences in experimental methods or systems. While Rod and

Mad2 are known to stream from kinetochores to the poles, BubR1

does not normally shed from kinetochores.[40] In addition, the

normal kinetochore localization timing of Cdc20 and BubR1 is

distinct from that of Mad2 and the RZZ complex. While Mad2

Figure 3. NDGA induced spindle pole accumulation of EGFP-hZW10 occurs by kinetochore ‘shedding’ to the spindle pole. A) HeLa
cells stably expressing EGFP-hZW10 were treated with 30 mM NDGA imaged 15 minutes after drug addition using a spinning disk confocal
microscope. Maximum projections for every second frame of 5 1 mm Z-stacks collected every 2.26 seconds are shown. EGFP-hZW10 had accumulated
at the spindle poles at the start of filming and is seen streaming towards the pole from the kinetochore. Time shown as seconds.milliseconds, scale
bar = 10 mm B) Magnified images from the movie stills showing EGFP-hZW10 foci streaming towards the poles (marked with a black line). The white
arrows indicate kinetochore bound EGFP-hZW10 and the coloured arrowheads point to streaming EGFP-hZW10 foci. Time shown as
seconds.milliseconds, White scale bars = 10 mm. C) HeLa cells treated with 30 mM NDGA for 15 minutes and stained with hZW10 and ACA
antibodies. Chromosomes are stained with DAPI. hZW10 foci can be seen between the kinetochores and the spindle poles, indicative of streaming.
Magnified views are shown below. The yellow arrows indicate the hZW10 foci that are presumed to be streaming towards the pole and are no longer
kinetochore associated (white arrow). Large scale bar = 10 mm, small scale bar = 1 mm.
doi:10.1371/journal.pone.0016494.g003
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Figure 4. NDGA induced transport of hZW10 to spindle poles requires k-MT attachments. A) HeLa cells stably expressing EGFP-hZW10
were pre-treated with either: 7 mM STLC for 30 minutes, 12.5 mM MG132 for 1 hour, 12.5 mM MG132 for 1 hour followed by 12.5 mM MG132 and 1 mM
taxol for 30 minutes, 0.5 mM vinblastine for 30 minutes or 2 mM ZM447439 for 30 minutes. 30 mM NDGA was added and the cells were immediately
imaged using the spinning disk confocal microscope. Z-stacks of 1 mm thickness were collected every minute after NDGA treatment. Maximum
projections of ,20 Z-stacks are shown. The addition of NDGA induced EGFP-hZW10 transport to the spindle pole in all of the cells except those
treated with vinblastine. Scale bar = 10 mm. B) HeLa cells pre-treated as above with either 0.5 mM vinblastine, 12.5 mM MG132, 12.5 mM MG132 + 1 mM
taxol, 7 mM STLC or 2 mM ZM447439 were treated with 30 mM NDGA for 30 minutes and stained with hZW10 and pericentrin antibodies. hZW10 is
observed to accumulate at spindle poles in all but the vinblastine treated cells. Chromosomes are stained with DAPI. Scale bar = 10 mm. C)
Measurement of endogenous hZW10 intensity at spindle poles during mitosis and upon treatment with NDGA. (Error bars = +/2 one standard
deviation).
doi:10.1371/journal.pone.0016494.g004
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Figure 5. hZW10 is required for NDGA induced dynein/dynactin-mediated transport of kinetochore cargo. A) HeLa cells transfected
with hZW10 siRNA for 72 hours and subsequently treated with 30 mM NDGA for 30 minutes were stained with hZW10, ACA and either hROD, CENP-E
or hMad2 antibodies. Depletion of hZW10 prevented NDGA induced transport and accumulation of hROD, hCENP-E and hMad2 onto spindle poles.
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and ZW10 vacate the kinetochore upon MT attachment and

bipolar alignment respectively,[16,26,41] BubR1 and Cdc20

remain at the kinetochore at metaphase and into anaphase

respectively indicating that their removal is not required for

inactivation of the checkpoint.[38,40,42,43] The separation of

Mad2 from BubR1 and Cdc20 at metaphase implicates the

possible disassembly of the MCC complex for checkpoint

silencing. Furthermore, the precise mechanism of NDGA induced

spindle pole accumulation is unknown and hCdc20 and hBubR1

may be transiently transported by dynein/dynactin but not

retained at spindle poles. On the other hand, the majority of the

remaining NDGA insensitive proteins (hZwint-1, hHec1, hBub1,

hPlk1 and hAurora B kinase) are known to be stable kinetochore

components or have only partial recovery as examined by

FRAP[37,38,44,45,46,47] and would not be expected to be

dynein/dynactin cargo.

Within the pool of NDGA responsive kinetochore proteins there

appears to be two distinct types of proteins; those that only

accumulate at the spindle poles following NDGA treatment when

the checkpoint is active (e.g. Mad2) and those that accumulate

throughout mitosis (e.g. hZW10). We observed that hZW10 is able

to accumulate at spindle poles from prometaphase through

anaphase and when cells are in a checkpoint inactive state with

complete chromosome alignment, as achieved by MG132

treatment. In contrast, Mad2 accumulated in prometaphase cells

but not in MG132 treated cells (Figure 5C). These observed

differences may be due to a difference in kinetochore recruitment

or a change in release from spindle poles following checkpoint

silencing. The observed timing of accumulation for hZW10 may

be a reflection of its role in recruiting dynein/dynactin to the

kinetochore. In addition, hZW10 may be required for regulating

the removal of checkpoint proteins from the kinetochore so that

the checkpoint is not erroneously turned on or off. The slowed and

reduced NDGA induced accumulation of hZW10 at the poles

when cells have fully aligned chromosomes but lack inter-

kinetochore tension (MG132 and taxol) may be indicative of this

potential regulatory role (Figure 4C). Future studies may shed light

upon the role of hZW10 in checkpoint regulation.

Materials and Methods

Cell Culture
HeLa cells were obtained from ATCC (CCL-2) and grown in

DMEM with 10% FCS and 2 mM L-Glutamine at 37uC in 5%

CO2. For FRAP experiments, HeLa cell media was supplemented

with 1 M HEPES buffer (pH 7.4, Gibco) to a final concentration

of 7 mM. Vinblastine (Sigma) was used at a final concentration of

0.5 mM unless otherwise stated. STLC (Sigma) was used at a final

concentration of 2 mM. NDGA (Biomol) was used at a final

concentration of 30 mM. MG132 (VWR) was used at a final

concentration of 12.5 mM. Taxol (Sigma) was used at a final

concentration of 1 mM. ZM447439 (Astra) was used at a final

concentration of 2 mM. NDGA, STLC, ZM447439 and vinblas-

tine treatments were for 30 minutes, MG132 was 1 hour and

MG132 with taxol was 1 hour MG132 followed by 30 minutes

with MG132 and taxol together.

Western Blotting
HeLa cells were harvested for western blotting as previously

described[48] and western blots were stained and analyzed as

previously described.[17]

Fluorescence microscopy
HeLa cells were processed for immunofluorescence as previ-

ously described.[17]

hZW10 was visualized using rabbit or rat anti-hZW10

antibodies at a 1/1500 dilution and 1/500 dilution respective-

ly[13] and ACA was visualized using human ACA sera at a 1/

3000 dilution (gift from Dr. Marvin Fritzler, University of

Calgary). Pericentrin was visualized using rabbit-anti pericentrin

antibodies (Abcam) at 1/1000 dilution. hROD was visualized

using rabbit anti-hROD antibodies[13] at a 1/1000 dilution.

hCENP-E was visualized using rabbit anti-hCENP-E antibod-

ies[48] at a dilution of 1/1000. hMad2 was visualized using rabbit

anti-hMad2 antibodies (gift from Dr. Salmon) at a dilution of 1/

250. hBubR1 was visualized using rabbit anti-hBubR1 antibod-

ies[49] at a dilution of 1/500. hp50 was visualized using mouse

anti-hp50 antibodies (gift from Dr. Valle) at a dilution of 1/750.

hdIC was visualized using the 74.1 mouse antibody (Abcam) at a

dilution of 1/500. hZwint-1 was visualized using rat anti-hZwint-1

antibodies (unpublished) at a dilution of 1/1000. Cyclin B was

visualized with rabbit anti-cyclin B antibodies at a dilution of 1/

250 (Santa Cruz). hBub1 was visualized using rat anti-hBub1

antibodies[50] at a dilution of 1/1000. hMps1 was visualized using

rabbit anti-hMps1 antibodies[51] at a dilution of 1/1000. hMad1

was visualized using mouse anti-hMad1 antibodies[52] at a

dilution of 1/500. Tubulin was visualized using the B512 mouse

anti-Tubulin antibody (Sigma) at a dilution of 1/1500. hCENP-F

was visualized using rabbit anti-hCENP-F antibodies[48] at a

dilution of 1/1000. hAurora B was visualized using rabbit anti-

hAurora B antibodies (Abcam) at a dilution of 1/1500. hCdc20

was visualized using rabbit anti-hCdc20 antibodies[53] at a

dilution of 1/500. MCAK was visualized using rabbit anti-MCAK

(Abcam) antibodies at a dilution of 1/500. hPlk1 was visualised

using mouse anti-hPlk1 antibodies (gift from Dr. Lee) at a dilution

of 1/1000. hHec1 was visualized using rabbit anti-hHec1

antibodies (Abcam) at a dilution of 1/1500. All secondary

antibodies conjugated to Alexa 488, 555 or 647 were used at a

dilution of 1/1000 (Molecular Probes). Cold stable MTs were

generated by incubation of cells with ice cold media and on ice for

10 minutes. A Zeiss AxioPlan2 microscope equipped with

epifluorescence optics was used to collect the images. Cells were

visualized with a 100X Plan-Apochromatic objective (NA1.4) and

images were captured with a Photometrics CoolSNAP HQ CCD

camera (Roper Scientific Inc., Trenton, NJ) that was controlled

with a personal computer running Metamorph software (v7.1,

Universal Imaging Corporation, Downingtown, PA). The cover-

slips were mounted using Mowoil mounting media (Calbiochem)

Scale bar = 10 mm. On the right is an immunoblot of HeLa cell lysates depleted of hZW10 after 72 hours of siRNA and stained with the corresponding
antibodies. B) HeLa cells transiently transfected with EGFP-hZW10 wild type or mutants for 24 hours and then treated with 30 mM NDGA for 30
minutes. Mutants C5 (1–410aa) and J (L248LRPQL) are unable to localize to the kinetochore and do not accumulate at the spindle pole following
NDGA treatment. Mutants N1 (52–779aa), N2 (75–779aa) and DI69AA are able to localize to the kinetochore but do not interact with hZwint-1 and are
able to transport to the pole but do not accumulate to wild type levels following NDGA treatment. Chromosomes are stained with DAPI. Scale
bar = 10 mm. C) Prometaphase or MG132 treated (12.5 mM for 1 hour) HeLa cells stably expressing EGFP-hZW10 and transiently transfected with
mCherry-hMad2 were imaged live upon treatment with 30 mM NDGA. Only EGFP-hZW10 is observed to transport onto spindle poles in the MG132
arrested cells, while both EGFP-hZW10 and mCherry-hMad2 transport onto spindle poles in prometaphase cells. Time is indicated in minutes:seconds.
Scale bar = 10 mm.
doi:10.1371/journal.pone.0016494.g005
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Figure 6. NDGA induced transport of kinetochore cargo onto spindle poles. A–C) HeLa cells treated with 30 mM NDGA for 30 minutes and stained
with the indicated antibodies. Panel A depicts the RZZ component hROD, the dynein/dynactin components hp50 and hdIC and the hZW10 interactor hZwint-1.
Panel B depicts non-RZZ complex kinetochore components transported by NDGA treatment while panel C depicts kinetochore and centromere components
not transported by NDGA treatment. Co-staining with DAPI, hZW10 and ACA for each experiment is shown in Figures S2–S5. Scale bar = 10 mm.
doi:10.1371/journal.pone.0016494.g006
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and imaging was performed at room temperature. Image

processing was performed using Photoshop 7.0 (Adobe Systems

Inc., Mountain View CA).

Spindle pole or total kinetochore intensity was measured using

Imaris software (Bitplane Scientific Software) from Z-stacks

collected as previously described. [16] Spindle pole intensity was

measured by outlining the spindle pole, calculating its fluorescence

intensity in 3D and then comparing the value to the total

fluorescence intensity of the entire cell. In cells with two visible

spindle poles, both poles were measured individually and added

together before comparing to the total cell intensity. Statistics and

graphing were preformed using Excel (Microsoft).

Electron Microscopy
For Electron Microscopy, cells were fixed in 3% glutaraldehyde

in Millonig’s phosphate buffer for 1 hr at room temperature. Post-

fixation was in 2% OsO4 for 20 minutes. The cells were

dehydrated in ethanol, and then infiltrated with Polybed 812

resin (Polysciences). Polymerization was performed at 37uC for

24 hrs. Silver-gray sections were cut with an ultramicrotome

(Leica) equipped with a diamond knife, and sections were stained

with uranyl acetate and lead citrate and examined in a electron

microscope (H-7000:Hitachi).

siRNA. hZW10 siRNA knock-down was performed as

previously described.[17]

Transient Transfection and Permanent Cell Line Selection.
HeLa cells grown to 60% confluence on coverslips in 35 mm

dishes were transiently transfected with 2 mg of the EGFP

constructs or 4 mg of the 3X Flag-hp50 construct with 10 ml

1 mg/ml linear Polyethylenimine, MW ,25,000 (Cedarlane) for

24 hours. Selection of the permanent cell line expressing EGFP-

hZW10 as previously described.[17]

Live Cell Imaging
FRAP was performed as previously described.[17] Briefly, single

spindle poles were laser ablated with 10 laser pulses and the

subsequent fluorescence recovery was observed for 90–120

seconds at 1–10 seconds intervals. Data was collected using the

Zeiss LSM software (Zeiss), processed using Excel (Microsoft) and

graphed using Prism software. Live cell imaging was performed as

previously described.[16] The data was analyzed using Ultra-

VIEW ERS software (PerkinElmer).

Supporting Information

Figure S1 NDGA treatment does not disrupt k-MT
attachments. A) HeLa cells arrested with 12.5 mM MG132

and subsequently treated with NDGA were exposed to ice cold

media for 10 minutes and harvested, immunofluorescence stained

and imaged in 3D using confocal microscopy. Tubulin and ACA

staining shows that NDGA does not affect k-MT attachments.

Insets show enlargements of k-MT attachments. Tubulin is shown

in green, ACA in red. Scale bar = 10 mm. ,50 kinetochores per

cell, as observed by ACA staining, were analyzed for MT

attachments and scored as ratio of attached/total. MG132 n = 3

cells, 164 kinetochores and NDGA n = 10 cells, 490 kinetochores.

Error bars = +/2 one standard deviation. B) HeLa cells treated

with NDGA for 0.5 hours (top), 3 hours (middle) or 6 hours

(bottom) were fixed and analyzed for k-MT attachments using

electron microscopy. Shown are three different magnifications of

chromosomes and their corresponding k-MTs. In all three NDGA

treatments normal kinetochore plates as well as k-MTs are

observed. Yellow arrows indicate kinetochores while the arrow

heads indicate k-MTs.

(TIF)

Figure S2 NDGA transport of hZW10, hROD, hdIC and
hp50. A-D) HeLa cells treated with 30 mM NDGA for 30 minutes

and stained with hZW10, ACA and either: hROD (A), hZwint-1

(B), hp50 (C) or hdIC (D) antibodies. hZW10, hROD, hdIC and

hp50 are observed to accumulate at spindle poles while hZwint-1

does not. Chromosomes are stained with DAPI. Scale bar = 10 mm.

(TIF)

Figure S3 hMad2 and hCENP-E but not hBub1 or
hBubR1 are transported to spindle poles in the presence
of NDGA. A–D) HeLa cells treated with 30 mM NDGA for 30

minutes and stained with hZW10, ACA and either: hMad2 (A),

hBubR1 (B), hBub1 (C) or hCENP-E (D) antibodies. hZW10,

hCENP-E and hMad2 are observed to accumulate at spindle poles

while hBub1 and hBubR1 do not. Chromosomes are stained with

DAPI. Scale bar = 10 mm.

(TIF)

Figure S4 hMps1, hSpindly, hMad1, Cdc27 and cyclin-
B are transported to spindle poles in the presence of
NDGA. A–E) HeLa cells treated with 30 mM NDGA for 30

minutes and stained with hZW10, ACA and either: hMps1 (A),

hSpindly (B), hMad1 (C), hCdc27 (D) or cyclin-B (E) antibodies.

hZW10, hMps1, hMad1, hCdc27, cyclin-B and hSpindly are

observed to accumulate at spindle poles. Chromosomes are stained

with DAPI. Scale bar = 10 mm.

(TIF)

Figure S5 hAurora B, MCAK, hPlk1, hHec1, hCENP-F
and hCdc20 are not transported to spindle poles in the
presence of NDGA. A–F) HeLa cells treated with 30 mM

NDGA for 30 minutes and stained with hZW10, ACA and either:

hAurora B (A), MCAK (B), hPlk1 (C), hHec1 (D), hCENP-F (E) or

hCdc20 (F) antibodies. Only hZW10 is observed to accumulate at

spindle poles. Chromosomes are stained with DAPI. Scale

bar = 10 mm.

(TIF)

Figure S6 Live cell analysis of hp50, hBub1, cyclin- B
and hMad2 response to NDGA treatment. HeLa cells

transiently transfected with either: YFP-hp50, EGFP-hBub1,

cyclin-B-GFP or EGFP-hMad2 were imaged using a spinning

disk confocal microscope. Upon addition of NDGA, the cells were

imaged every 1 minute as a Z-stack of ,20 images 1 mm apart.

Maximum projections are shown. YFP-hp50, cyclin-B-GFP and

EGFP-hMad2 are observed to accumulate at spindle poles upon

NDGA treatment while EGFP-hBub1 does not. Time is indicated

as minutes:seconds. Scale bar = 10 mm.

(TIF)

Movie S1 NDGA induced accumulation of EGFP-
hZW10. HeLa cells stably expressing EGFP-hZW10 were pre-

treated with MG132 and then with 30 mM NDGA and

immediately imaged using the spinning disk confocal microscope.

Maximum projections of ,20 1 mm Z-stacks taken 10 seconds

apart are shown. EGFP-hZW10 is seen to accumulate at the

spindle pole within minutes of adding NDGA. Time shown as

minutes:seconds.milliseconds.

(MOV)

Movie S2 NDGA induced accumulation of EGFP-hZW10
by kinetochore ‘shedding’. HeLa cells stably expressing EGFP-
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hZW10 were treated with 30 mM NDGA and imaged using the

spinning disk confocal microscope. Maximum projections of 5 1 mm

Z-stacks taken 2.26 seconds apart are shown. EGFP-hZW10 is seen

accumulated at the spindle poles at the start of the movie and

EGFP-hZW10 foci are seen steaming towards the spindle pole.

Time shown as minutes:seconds.milliseconds. Scale bar = 8 mm.

(MOV)
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